document.write( "Question 1173181: Problem 2. Below is a list of vertical jumps (in cm) for 24 athletes who compete in various different sports.
\n" );
document.write( "28 45 55 46 70 72 62 32 75 68 74 54 50 62 63 31 55 68 73 55 60 69 68 92\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "Part A. Using # of classes = 4, create a frequency table for the given data set, and use your frequency table to construct a histogram.
\n" );
document.write( "Part B. Using the data set above, calculate the quartiles Qi where i = 0, 1, 2, 3, 4, and construct a box-and-whiskers plot for this data set.
\n" );
document.write( "Part C. Calculate the 15th percentile of this data set.
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #850748 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! Absolutely! Let's break down each part of this data analysis problem.\r \n" ); document.write( "\n" ); document.write( "**Part A: Frequency Table and Histogram**\r \n" ); document.write( "\n" ); document.write( "1. **Determine the Range:** \n" ); document.write( " * Maximum value: 92 \n" ); document.write( " * Minimum value: 28 \n" ); document.write( " * Range: 92 - 28 = 64\r \n" ); document.write( "\n" ); document.write( "2. **Determine Class Width:** \n" ); document.write( " * Number of classes: 4 \n" ); document.write( " * Approximate class width: 64 / 4 = 16 \n" ); document.write( " * To make it easier, let's round up to a class width of 17.\r \n" ); document.write( "\n" ); document.write( "3. **Determine Class Limits:** \n" ); document.write( " * Starting with the minimum value (28), create the class limits: \n" ); document.write( " * Class 1: 28 - (28 + 16) 44 \n" ); document.write( " * Class 2: 45 - (45 + 16) 61 \n" ); document.write( " * Class 3: 62 - (62 + 16) 78 \n" ); document.write( " * Class 4: 79 - (79 + 16) 95\r \n" ); document.write( "\n" ); document.write( "4. **Create the Frequency Table:**\r \n" ); document.write( "\n" ); document.write( " | Class | Class Limits | Tally | Frequency | \n" ); document.write( " | --------- | ------------ | ---------- | --------- | \n" ); document.write( " | Class 1 | 28 - 44 | II | 2 | \n" ); document.write( " | Class 2 | 45 - 61 | IIIIIIII | 8 | \n" ); document.write( " | Class 3 | 62 - 78 | IIIIIIIIII | 10 | \n" ); document.write( " | Class 4 | 79 - 95 | IIII | 4 |\r \n" ); document.write( "\n" ); document.write( "5. **Construct the Histogram:**\r \n" ); document.write( "\n" ); document.write( " * X-axis: Class Limits \n" ); document.write( " * Y-axis: Frequency \n" ); document.write( " * Draw bars with heights corresponding to the frequencies of each class.\r \n" ); document.write( "\n" ); document.write( "Here's a text-based representation of what the histogram would look like:\r \n" ); document.write( "\n" ); document.write( "``` \n" ); document.write( "Frequency \n" ); document.write( "10 | ********** \n" ); document.write( " 9 | \n" ); document.write( " 8 | ******** \n" ); document.write( " 7 | \n" ); document.write( " 6 | \n" ); document.write( " 5 | \n" ); document.write( " 4 | **** \n" ); document.write( " 3 | \n" ); document.write( " 2 | ** \n" ); document.write( " 1 | \n" ); document.write( " --------------------------------- \n" ); document.write( " 28-44 45-61 62-78 79-95 Class Limits \n" ); document.write( "```\r \n" ); document.write( "\n" ); document.write( "**Part B: Quartiles and Box-and-Whiskers Plot**\r \n" ); document.write( "\n" ); document.write( "1. **Order the Data:** \n" ); document.write( " * 28, 31, 32, 45, 46, 50, 54, 55, 55, 55, 60, 62, 62, 63, 68, 68, 68, 69, 70, 72, 73, 74, 75, 92\r \n" ); document.write( "\n" ); document.write( "2. **Calculate Quartiles:** \n" ); document.write( " * n = 24 (number of data points) \n" ); document.write( " * Q1 (25th percentile): (n + 1) * 0.25 = 25 * 0.25 = 6.25, so Q1 is between the 6th and 7th values: (50 + 54) / 2 = 52 \n" ); document.write( " * Q2 (50th percentile, median): (n + 1) * 0.5 = 25 * 0.5 = 12.5, so Q2 is between the 12th and 13th values: (62 + 62) / 2 = 62 \n" ); document.write( " * Q3 (75th percentile): (n + 1) * 0.75 = 25 * 0.75 = 18.75, so Q3 is between the 18th and 19th values: (69 + 70) / 2 = 69.5 \n" ); document.write( " * Q0 (minimum): 28 \n" ); document.write( " * Q4 (maximum): 92\r \n" ); document.write( "\n" ); document.write( "3. **Construct the Box-and-Whiskers Plot:**\r \n" ); document.write( "\n" ); document.write( " * Draw a number line that covers the range of your data. \n" ); document.write( " * Draw a box from Q1 (52) to Q3 (69.5). \n" ); document.write( " * Draw a line inside the box at Q2 (62). \n" ); document.write( " * Draw a line (whisker) from Q1 to the minimum value (28). \n" ); document.write( " * Draw a line (whisker) from Q3 to the maximum value (92).\r \n" ); document.write( "\n" ); document.write( "**Part C: 15th Percentile**\r \n" ); document.write( "\n" ); document.write( "1. **Calculate the Position:** \n" ); document.write( " * (n + 1) * 0.15 = 25 * 0.15 = 3.75\r \n" ); document.write( "\n" ); document.write( "2. **Find the Value:** \n" ); document.write( " * The 15th percentile is between the 3rd and 4th values. \n" ); document.write( " * 3rd value: 32 \n" ); document.write( " * 4th value: 45 \n" ); document.write( " * Interpolate: 32 + 0.75 * (45 - 32) = 32 + 0.75 * 13 = 32 + 9.75 = 41.75\r \n" ); document.write( "\n" ); document.write( "Therefore, the 15th percentile is approximately 41.75 cm. \n" ); document.write( " \n" ); document.write( " |