document.write( "Question 1173267: Shown below is the solution to the linear program for finding Player A's optimal mixed strategy in a two-person, zero-sum game.\r
\n" ); document.write( "\n" ); document.write( "OBJECTIVE FUNCTION VALUE = 3.500\r
\n" ); document.write( "\n" ); document.write( " \r
\n" ); document.write( "\n" ); document.write( "VARIABLE\r
\n" ); document.write( "\n" ); document.write( "VALUE\r
\n" ); document.write( "\n" ); document.write( "REDUCED COSTS\r
\n" ); document.write( "\n" ); document.write( "PA1\r
\n" ); document.write( "\n" ); document.write( "0.050\r
\n" ); document.write( "\n" ); document.write( "0.000\r
\n" ); document.write( "\n" ); document.write( "PA2\r
\n" ); document.write( "\n" ); document.write( "0.600\r
\n" ); document.write( "\n" ); document.write( "0.000\r
\n" ); document.write( "\n" ); document.write( "PA3\r
\n" ); document.write( "\n" ); document.write( "0.350\r
\n" ); document.write( "\n" ); document.write( "0.000\r
\n" ); document.write( "\n" ); document.write( "GAINA\r
\n" ); document.write( "\n" ); document.write( "3.500\r
\n" ); document.write( "\n" ); document.write( "0.000\r
\n" ); document.write( "\n" ); document.write( " \r
\n" ); document.write( "\n" ); document.write( " \r
\n" ); document.write( "\n" ); document.write( " \r
\n" ); document.write( "\n" ); document.write( "CONSTRAINT\r
\n" ); document.write( "\n" ); document.write( "SLACK/SURPLUS\r
\n" ); document.write( "\n" ); document.write( "DUAL PRICES\r
\n" ); document.write( "\n" ); document.write( "1\r
\n" ); document.write( "\n" ); document.write( "0.000\r
\n" ); document.write( "\n" ); document.write( "−0.500\r
\n" ); document.write( "\n" ); document.write( "2\r
\n" ); document.write( "\n" ); document.write( "0.000\r
\n" ); document.write( "\n" ); document.write( "−0.500\r
\n" ); document.write( "\n" ); document.write( "3\r
\n" ); document.write( "\n" ); document.write( "0.000\r
\n" ); document.write( "\n" ); document.write( " 0.000\r
\n" ); document.write( "\n" ); document.write( "4\r
\n" ); document.write( "\n" ); document.write( "0.000\r
\n" ); document.write( "\n" ); document.write( " 3.500\r
\n" ); document.write( "\n" ); document.write( " \r
\n" ); document.write( "\n" ); document.write( "a.\r
\n" ); document.write( "\n" ); document.write( "What is Player A's optimal mixed strategy?\r
\n" ); document.write( "\n" ); document.write( "b.\r
\n" ); document.write( "\n" ); document.write( "What is Player B's optimal mixed strategy?\r
\n" ); document.write( "\n" ); document.write( "c.\r
\n" ); document.write( "\n" ); document.write( "What is Player A's expected gain?\r
\n" ); document.write( "\n" ); document.write( "d.\r
\n" ); document.write( "\n" ); document.write( "What is Player B's expected loss?
\n" ); document.write( "

Algebra.Com's Answer #850745 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
Let's break down the information from the linear program output to answer each question:\r
\n" ); document.write( "\n" ); document.write( "**a. Player A's Optimal Mixed Strategy**\r
\n" ); document.write( "\n" ); document.write( "* **PA1 = 0.050:** Player A should play strategy 1 with a probability of 0.05 (or 5%).
\n" ); document.write( "* **PA2 = 0.600:** Player A should play strategy 2 with a probability of 0.60 (or 60%).
\n" ); document.write( "* **PA3 = 0.350:** Player A should play strategy 3 with a probability of 0.35 (or 35%).\r
\n" ); document.write( "\n" ); document.write( "Therefore, Player A's optimal mixed strategy is (0.05, 0.60, 0.35).\r
\n" ); document.write( "\n" ); document.write( "**b. Player B's Optimal Mixed Strategy**\r
\n" ); document.write( "\n" ); document.write( "To find Player B's optimal mixed strategy, we look at the **DUAL PRICES** of the constraints. These represent the optimal probabilities for Player B's strategies.\r
\n" ); document.write( "\n" ); document.write( "* Constraint 1's Dual Price = -0.500
\n" ); document.write( "* Constraint 2's Dual Price = -0.500
\n" ); document.write( "* Constraint 3's Dual Price = 0.000\r
\n" ); document.write( "\n" ); document.write( "However, the Dual Prices must be converted into positive values, and then normalized, as they represent the negative of the player B's strategy.
\n" ); document.write( "Also, the dual prices represent the negative of the player B's strategy, and the 4th constraint represents the gain.
\n" ); document.write( "Therefore, the dual prices of constraints 1,2, and 3 are the negative of the probabilities of player B's strategies.\r
\n" ); document.write( "\n" ); document.write( "To normalize the dual prices, we must take the absolute value of the dual prices. Then add them together.\r
\n" ); document.write( "\n" ); document.write( "0.5 + 0.5 + 0 = 1\r
\n" ); document.write( "\n" ); document.write( "Then we can divide each dual price by the sum.\r
\n" ); document.write( "\n" ); document.write( "* Player B strategy 1: 0.5/1 = 0.5
\n" ); document.write( "* Player B strategy 2: 0.5/1 = 0.5
\n" ); document.write( "* Player B strategy 3: 0/1 = 0\r
\n" ); document.write( "\n" ); document.write( "Therefore, Player B's optimal mixed strategy is (0.5, 0.5, 0).\r
\n" ); document.write( "\n" ); document.write( "**c. Player A's Expected Gain**\r
\n" ); document.write( "\n" ); document.write( "* **OBJECTIVE FUNCTION VALUE = 3.500**
\n" ); document.write( "* **GAINA = 3.500**\r
\n" ); document.write( "\n" ); document.write( "Player A's expected gain is 3.5.\r
\n" ); document.write( "\n" ); document.write( "**d. Player B's Expected Loss**\r
\n" ); document.write( "\n" ); document.write( "In a zero-sum game, Player B's expected loss is equal to Player A's expected gain.\r
\n" ); document.write( "\n" ); document.write( "Therefore, Player B's expected loss is also 3.5.
\n" ); document.write( "
\n" ); document.write( "
\n" );