document.write( "Question 1209828: The Fibonacci sequence, is defined by F_0 = 0, F_1 = 1, and F_n = F_{n - 2} + F_{n - 1}. It turns out that
\n" );
document.write( "F_n = \frac{\alpha^n - \beta^n}{\sqrt{5}},
\n" );
document.write( "where \alpha = \frac{1 + \sqrt{5}}{2} and \beta = \frac{1 - \sqrt{5}}{2}.\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "The Lucas sequence is defined as follows: L_0 = 2, L_1 = 1, and
\n" );
document.write( "L_n = L_{n - 1} + L_{n - 2}
\n" );
document.write( "for n \ge 2. What is L_4?
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #850737 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! Let's calculate $L_4$ using the given recurrence relation and initial values.\r \n" ); document.write( "\n" ); document.write( "* $L_0 = 2$ \n" ); document.write( "* $L_1 = 1$ \n" ); document.write( "* $L_n = L_{n-1} + L_{n-2}$ for $n \ge 2$\r \n" ); document.write( "\n" ); document.write( "Now, let's find the subsequent terms:\r \n" ); document.write( "\n" ); document.write( "* $L_2 = L_1 + L_0 = 1 + 2 = 3$ \n" ); document.write( "* $L_3 = L_2 + L_1 = 3 + 1 = 4$ \n" ); document.write( "* $L_4 = L_3 + L_2 = 4 + 3 = 7$\r \n" ); document.write( "\n" ); document.write( "Therefore, $L_4 = 7$.\r \n" ); document.write( "\n" ); document.write( "Final Answer: The final answer is $\boxed{7}$ \n" ); document.write( " \n" ); document.write( " |