document.write( "Question 1209830: Let
\n" );
document.write( "A_0 = 0
\n" );
document.write( "A_1 = 1
\n" );
document.write( "A_n = A_{n - 1} + A_{n - 2} for n ge 2\r
\n" );
document.write( "\n" );
document.write( "There is a unique ordered pair (c,d) such that c \alpha^n + d \beta^n is the closed form for sequence A_n. Find the ordered pair (c,d).
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #850736 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! You've described the Fibonacci sequence, where:\r \n" ); document.write( "\n" ); document.write( "* $A_0 = 0$ \n" ); document.write( "* $A_1 = 1$ \n" ); document.write( "* $A_n = A_{n-1} + A_{n-2}$ for $n \ge 2$\r \n" ); document.write( "\n" ); document.write( "We're looking for the closed-form expression of $A_n$ in the form $c \alpha^n + d \beta^n$, where $\alpha$ and $\beta$ are the roots of the characteristic equation.\r \n" ); document.write( "\n" ); document.write( "**1. Find the Characteristic Equation and its Roots**\r \n" ); document.write( "\n" ); document.write( "The characteristic equation for the recurrence relation is:\r \n" ); document.write( "\n" ); document.write( "* $x^2 - x - 1 = 0$\r \n" ); document.write( "\n" ); document.write( "Using the quadratic formula, the roots are:\r \n" ); document.write( "\n" ); document.write( "* $\alpha = \frac{1 + \sqrt{5}}{2}$ (the golden ratio) \n" ); document.write( "* $\beta = \frac{1 - \sqrt{5}}{2}$\r \n" ); document.write( "\n" ); document.write( "**2. Use Initial Conditions to Solve for c and d**\r \n" ); document.write( "\n" ); document.write( "We have the following initial conditions:\r \n" ); document.write( "\n" ); document.write( "* $A_0 = 0$ \n" ); document.write( "* $A_1 = 1$\r \n" ); document.write( "\n" ); document.write( "Substitute these into the closed-form expression:\r \n" ); document.write( "\n" ); document.write( "* For $n = 0$: $A_0 = c \alpha^0 + d \beta^0 = c + d = 0$ \n" ); document.write( "* For $n = 1$: $A_1 = c \alpha^1 + d \beta^1 = c \left( \frac{1 + \sqrt{5}}{2} \right) + d \left( \frac{1 - \sqrt{5}}{2} \right) = 1$\r \n" ); document.write( "\n" ); document.write( "From the first equation, we get $d = -c$. Substitute this into the second equation:\r \n" ); document.write( "\n" ); document.write( "* $c \left( \frac{1 + \sqrt{5}}{2} \right) - c \left( \frac{1 - \sqrt{5}}{2} \right) = 1$ \n" ); document.write( "* $c \left( \frac{1 + \sqrt{5} - (1 - \sqrt{5})}{2} \right) = 1$ \n" ); document.write( "* $c \left( \frac{2 \sqrt{5}}{2} \right) = 1$ \n" ); document.write( "* $c \sqrt{5} = 1$ \n" ); document.write( "* $c = \frac{1}{\sqrt{5}}$\r \n" ); document.write( "\n" ); document.write( "Now, substitute $c$ back into $d = -c$:\r \n" ); document.write( "\n" ); document.write( "* $d = -\frac{1}{\sqrt{5}}$\r \n" ); document.write( "\n" ); document.write( "**3. The Ordered Pair (c, d)**\r \n" ); document.write( "\n" ); document.write( "Therefore, the ordered pair $(c, d)$ is:\r \n" ); document.write( "\n" ); document.write( "* $\left( \frac{1}{\sqrt{5}}, -\frac{1}{\sqrt{5}} \right)$\r \n" ); document.write( "\n" ); document.write( "Final Answer: The final answer is $\boxed{\left( \frac{1}{\sqrt{5}}, -\frac{1}{\sqrt{5}} \right)}$ \n" ); document.write( " \n" ); document.write( " |