document.write( "Question 1174088: Take CGPA of 05 students of your class; with n=2:
\n" );
document.write( "Req: (a) Develop the sampling distribution of N and n
\n" );
document.write( " (b) Prove that mean of the means of samples is equal to mean of population
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #850709 by CPhill(1987) You can put this solution on YOUR website! Alright, let's work through this problem using hypothetical CGPA data for 5 students.\r \n" ); document.write( "\n" ); document.write( "**1. Hypothetical CGPA Data**\r \n" ); document.write( "\n" ); document.write( "Let's assume the CGPA of 5 students are:\r \n" ); document.write( "\n" ); document.write( "* Student 1: 3.2 \n" ); document.write( "* Student 2: 3.5 \n" ); document.write( "* Student 3: 3.8 \n" ); document.write( "* Student 4: 3.0 \n" ); document.write( "* Student 5: 3.7\r \n" ); document.write( "\n" ); document.write( "**2. Population Calculations**\r \n" ); document.write( "\n" ); document.write( "* Population (N): {3.2, 3.5, 3.8, 3.0, 3.7} \n" ); document.write( "* Population Mean (μ): (3.2 + 3.5 + 3.8 + 3.0 + 3.7) / 5 = 17.2 / 5 = 3.44\r \n" ); document.write( "\n" ); document.write( "**3. Sampling Distribution (n=2)**\r \n" ); document.write( "\n" ); document.write( "* We need to find all possible samples of size 2 (n=2) from this population. \n" ); document.write( "* The samples are: \n" ); document.write( " * (3.2, 3.5) \n" ); document.write( " * (3.2, 3.8) \n" ); document.write( " * (3.2, 3.0) \n" ); document.write( " * (3.2, 3.7) \n" ); document.write( " * (3.5, 3.8) \n" ); document.write( " * (3.5, 3.0) \n" ); document.write( " * (3.5, 3.7) \n" ); document.write( " * (3.8, 3.0) \n" ); document.write( " * (3.8, 3.7) \n" ); document.write( " * (3.0, 3.7)\r \n" ); document.write( "\n" ); document.write( "**4. Calculate Sample Means**\r \n" ); document.write( "\n" ); document.write( "* Now, calculate the mean of each sample: \n" ); document.write( " * (3.2 + 3.5) / 2 = 3.35 \n" ); document.write( " * (3.2 + 3.8) / 2 = 3.5 \n" ); document.write( " * (3.2 + 3.0) / 2 = 3.1 \n" ); document.write( " * (3.2 + 3.7) / 2 = 3.45 \n" ); document.write( " * (3.5 + 3.8) / 2 = 3.65 \n" ); document.write( " * (3.5 + 3.0) / 2 = 3.25 \n" ); document.write( " * (3.5 + 3.7) / 2 = 3.6 \n" ); document.write( " * (3.8 + 3.0) / 2 = 3.4 \n" ); document.write( " * (3.8 + 3.7) / 2 = 3.75 \n" ); document.write( " * (3.0 + 3.7) / 2 = 3.35\r \n" ); document.write( "\n" ); document.write( "**5. Sampling Distribution of the Means**\r \n" ); document.write( "\n" ); document.write( "* The sampling distribution of the means is: \n" ); document.write( " * {3.35, 3.5, 3.1, 3.45, 3.65, 3.25, 3.6, 3.4, 3.75, 3.35}\r \n" ); document.write( "\n" ); document.write( "**(a) Develop the sampling distribution of N and n**\r \n" ); document.write( "\n" ); document.write( "* N = {3.2, 3.5, 3.8, 3.0, 3.7} \n" ); document.write( "* Sampling Distribution of n = {3.35, 3.5, 3.1, 3.45, 3.65, 3.25, 3.6, 3.4, 3.75, 3.35}\r \n" ); document.write( "\n" ); document.write( "**(b) Prove that mean of the means of samples is equal to mean of population**\r \n" ); document.write( "\n" ); document.write( "* Mean of the sample means (μ_x̄): \n" ); document.write( " * (3.35 + 3.5 + 3.1 + 3.45 + 3.65 + 3.25 + 3.6 + 3.4 + 3.75 + 3.35) / 10 = 34.4 / 10 = 3.44 \n" ); document.write( "* Population Mean (μ): 3.44\r \n" ); document.write( "\n" ); document.write( "* μ_x̄ = μ = 3.44\r \n" ); document.write( "\n" ); document.write( "**Therefore, the mean of the sample means (3.44) is equal to the population mean (3.44).** \n" ); document.write( " \n" ); document.write( " |