document.write( "Question 1174253: The unit cost per gizmo is $30,the fixed cost for making gizmos is $1,200. 60 gizmos must be sold in order to break even.
\n" ); document.write( "-Find linear cost function
\n" ); document.write( "-Find linear revenue function
\n" ); document.write( "-Find linear profit function
\n" ); document.write( "Show work with all steps
\n" ); document.write( "

Algebra.Com's Answer #850700 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
Absolutely! Let's break down this problem step-by-step.\r
\n" ); document.write( "\n" ); document.write( "**1. Linear Cost Function (C(x))**\r
\n" ); document.write( "\n" ); document.write( "* **Fixed Cost:** $1,200
\n" ); document.write( "* **Unit Cost:** $30 per gizmo
\n" ); document.write( "* **x:** Number of gizmos produced\r
\n" ); document.write( "\n" ); document.write( "The linear cost function is the sum of the fixed cost and the variable cost (unit cost multiplied by the number of gizmos):\r
\n" ); document.write( "\n" ); document.write( " * C(x) = Fixed Cost + (Unit Cost * x)
\n" ); document.write( " * C(x) = 1200 + 30x\r
\n" ); document.write( "\n" ); document.write( "**2. Linear Revenue Function (R(x))**\r
\n" ); document.write( "\n" ); document.write( "* **Break-even Point:** 60 gizmos
\n" ); document.write( "* At the break-even point, total revenue equals total cost.\r
\n" ); document.write( "\n" ); document.write( "First, let's find the total cost at the break-even point:\r
\n" ); document.write( "\n" ); document.write( " * C(60) = 1200 + 30(60)
\n" ); document.write( " * C(60) = 1200 + 1800
\n" ); document.write( " * C(60) = 3000\r
\n" ); document.write( "\n" ); document.write( "Since revenue equals cost at the break-even point:\r
\n" ); document.write( "\n" ); document.write( " * R(60) = 3000\r
\n" ); document.write( "\n" ); document.write( "Now, let's find the selling price per gizmo:\r
\n" ); document.write( "\n" ); document.write( " * Selling Price = Total Revenue / Number of Gizmos
\n" ); document.write( " * Selling Price = 3000 / 60
\n" ); document.write( " * Selling Price = 50\r
\n" ); document.write( "\n" ); document.write( "Therefore, the linear revenue function is:\r
\n" ); document.write( "\n" ); document.write( " * R(x) = Selling Price * x
\n" ); document.write( " * R(x) = 50x\r
\n" ); document.write( "\n" ); document.write( "**3. Linear Profit Function (P(x))**\r
\n" ); document.write( "\n" ); document.write( "* Profit is the difference between revenue and cost:\r
\n" ); document.write( "\n" ); document.write( " * P(x) = R(x) - C(x)
\n" ); document.write( " * P(x) = 50x - (1200 + 30x)
\n" ); document.write( " * P(x) = 50x - 1200 - 30x
\n" ); document.write( " * P(x) = 20x - 1200\r
\n" ); document.write( "\n" ); document.write( "**Summary**\r
\n" ); document.write( "\n" ); document.write( "* **Linear Cost Function:** C(x) = 1200 + 30x
\n" ); document.write( "* **Linear Revenue Function:** R(x) = 50x
\n" ); document.write( "* **Linear Profit Function:** P(x) = 20x - 1200
\n" ); document.write( "
\n" ); document.write( "
\n" );