document.write( "Question 1174329: From past claims data for a particular insurance business, an insurance company considers that claims for the coming year will have a mean size of RM5000 and standard deviation of RM7500. Claim sizes are assumed to have a lognormal distribution. Estimate the probability of claims exceeding RM20000. \n" ); document.write( "
Algebra.Com's Answer #850696 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! Let's solve this problem step-by-step.\r \n" ); document.write( "\n" ); document.write( "**1. Understand Lognormal Distribution**\r \n" ); document.write( "\n" ); document.write( "* A random variable X has a lognormal distribution if Y = ln(X) has a normal distribution. \n" ); document.write( "* If X ~ Lognormal(μ, σ²), then ln(X) ~ Normal(μ, σ²). \n" ); document.write( "* We're given the mean and standard deviation of X (claim sizes), but we need to find the parameters (μ and σ) of the corresponding normal distribution of ln(X).\r \n" ); document.write( "\n" ); document.write( "**2. Relate Mean and Variance of Lognormal to Normal Parameters**\r \n" ); document.write( "\n" ); document.write( "* Let E[X] = 5000 and SD[X] = 7500. \n" ); document.write( "* Let Y = ln(X). Then Y ~ Normal(μ, σ²). \n" ); document.write( "* We have: \n" ); document.write( " * E[X] = exp(μ + σ²/2) \n" ); document.write( " * Var[X] = exp(2μ + σ²)(exp(σ²) - 1)\r \n" ); document.write( "\n" ); document.write( "**3. Solve for μ and σ**\r \n" ); document.write( "\n" ); document.write( "* E[X] = 5000 = exp(μ + σ²/2) \n" ); document.write( "* Var[X] = 7500² = 56250000 = exp(2μ + σ²)(exp(σ²) - 1)\r \n" ); document.write( "\n" ); document.write( "Let's take the natural logarithm of E[X]:\r \n" ); document.write( "\n" ); document.write( "* ln(5000) = μ + σ²/2 \n" ); document.write( "* 8.517193 = μ + σ²/2 \n" ); document.write( "* μ = 8.517193 - σ²/2\r \n" ); document.write( "\n" ); document.write( "Now, substitute this into the variance equation:\r \n" ); document.write( "\n" ); document.write( "* 56250000 = exp(2(8.517193 - σ²/2) + σ²)(exp(σ²) - 1) \n" ); document.write( "* 56250000 = exp(17.034386 - σ² + σ²)(exp(σ²) - 1) \n" ); document.write( "* 56250000 = exp(17.034386)(exp(σ²) - 1) \n" ); document.write( "* 56250000 / exp(17.034386) = exp(σ²) - 1 \n" ); document.write( "* 56250000 / 25000000 = exp(σ²) - 1 \n" ); document.write( "* 2.25 = exp(σ²) - 1 \n" ); document.write( "* 3.25 = exp(σ²) \n" ); document.write( "* σ² = ln(3.25) ≈ 1.178655 \n" ); document.write( "* σ ≈ √1.178655 ≈ 1.085658\r \n" ); document.write( "\n" ); document.write( "Now, find μ:\r \n" ); document.write( "\n" ); document.write( "* μ = 8.517193 - σ²/2 ≈ 8.517193 - 1.178655 / 2 ≈ 8.517193 - 0.5893275 ≈ 7.9278655\r \n" ); document.write( "\n" ); document.write( "**4. Calculate the Probability**\r \n" ); document.write( "\n" ); document.write( "* We want to find P(X > 20000). \n" ); document.write( "* This is equivalent to P(ln(X) > ln(20000)). \n" ); document.write( "* ln(20000) ≈ 9.903488 \n" ); document.write( "* Let Y = ln(X). We want to find P(Y > 9.903488). \n" ); document.write( "* Y ~ Normal(7.9278655, 1.178655) \n" ); document.write( "* Z = (Y - μ) / σ = (9.903488 - 7.9278655) / 1.085658 ≈ 1.8198 \n" ); document.write( "* P(Y > 9.903488) = P(Z > 1.8198)\r \n" ); document.write( "\n" ); document.write( "Using a standard normal table or calculator:\r \n" ); document.write( "\n" ); document.write( "* P(Z > 1.8198) ≈ 1 - P(Z ≤ 1.8198) ≈ 1 - 0.9656 ≈ 0.0344\r \n" ); document.write( "\n" ); document.write( "**Therefore, the estimated probability of claims exceeding RM20000 is approximately 0.0344.** \n" ); document.write( " \n" ); document.write( " |