document.write( "Question 1174372: A vehicle driver has to pay an annual road tax of RM 810 and RM 90 for insurance. His vehicle
\n" );
document.write( "can travel 500 kilometres to one gallon which costs 100 cents per gallon. The vehicle is
\n" );
document.write( "compulsory to be sent for service for every 5 000 kilometres travelled at a cost of RM 1 000, and
\n" );
document.write( "depreciation is calculated in cent by multiplying the square of the mileage by 0.1.
\n" );
document.write( "(a) If he covers x kilometres in a year, obtain an expression for the total cost in travelling x
\n" );
document.write( "kilometres and the average total cost per kilometre. \r
\n" );
document.write( "\n" );
document.write( "(b) Show that the total cost of travelling is RM 1 992 when the average total cost per kilometre
\n" );
document.write( "is minimized. \n" );
document.write( "
Algebra.Com's Answer #850694 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! Let's break down this problem step-by-step.\r \n" ); document.write( "\n" ); document.write( "**(a) Total Cost and Average Total Cost**\r \n" ); document.write( "\n" ); document.write( "1. **Fixed Costs:** \n" ); document.write( " * Annual Road Tax: RM 810 \n" ); document.write( " * Annual Insurance: RM 90 \n" ); document.write( " * Total Fixed Costs: RM 810 + RM 90 = RM 900\r \n" ); document.write( "\n" ); document.write( "2. **Fuel Cost:** \n" ); document.write( " * Distance per gallon: 500 km \n" ); document.write( " * Cost per gallon: 100 cents = RM 1 \n" ); document.write( " * Number of gallons needed for x km: x / 500 \n" ); document.write( " * Fuel Cost: (x / 500) * 1 = x / 500 RM\r \n" ); document.write( "\n" ); document.write( "3. **Service Cost:** \n" ); document.write( " * Service every 5000 km: x / 5000 services \n" ); document.write( " * Cost per service: RM 1000 \n" ); document.write( " * Service Cost: (x / 5000) * 1000 = x / 5 RM\r \n" ); document.write( "\n" ); document.write( "4. **Depreciation Cost:** \n" ); document.write( " * Depreciation per km: 0.1 cents = RM 0.001 \n" ); document.write( " * Total depreciation: 0.001 * x² RM\r \n" ); document.write( "\n" ); document.write( "5. **Total Cost (C(x)):** \n" ); document.write( " * C(x) = Fixed Costs + Fuel Cost + Service Cost + Depreciation Cost \n" ); document.write( " * C(x) = 900 + x / 500 + x / 5 + 0.001x² \n" ); document.write( " * C(x) = 900 + 0.002x + 0.2x + 0.001x² \n" ); document.write( " * C(x) = 0.001x² + 0.202x + 900\r \n" ); document.write( "\n" ); document.write( "6. **Average Total Cost per Kilometer (A(x)):** \n" ); document.write( " * A(x) = C(x) / x \n" ); document.write( " * A(x) = (0.001x² + 0.202x + 900) / x \n" ); document.write( " * A(x) = 0.001x + 0.202 + 900 / x\r \n" ); document.write( "\n" ); document.write( "**(b) Minimum Average Total Cost**\r \n" ); document.write( "\n" ); document.write( "1. **Find the Derivative of A(x):** \n" ); document.write( " * A(x) = 0.001x + 0.202 + 900x⁻¹ \n" ); document.write( " * A'(x) = 0.001 - 900x⁻² \n" ); document.write( " * A'(x) = 0.001 - 900 / x²\r \n" ); document.write( "\n" ); document.write( "2. **Set A'(x) = 0 to Find Critical Points:** \n" ); document.write( " * 0.001 - 900 / x² = 0 \n" ); document.write( " * 0.001 = 900 / x² \n" ); document.write( " * x² = 900 / 0.001 \n" ); document.write( " * x² = 900000 \n" ); document.write( " * x = √900000 = 948.68 km\r \n" ); document.write( "\n" ); document.write( "3. **Find the Minimum Average Total Cost:** \n" ); document.write( " * Substitute x = 948.68 into A(x): \n" ); document.write( " * A(948.68) = 0.001(948.68) + 0.202 + 900 / 948.68 \n" ); document.write( " * A(948.68) ≈ 0.94868 + 0.202 + 0.94868 \n" ); document.write( " * A(948.68) ≈ 2.09936 RM/km\r \n" ); document.write( "\n" ); document.write( "4. **Find the Total Cost at x = 948.68 km:** \n" ); document.write( " * C(948.68) = 0.001(948.68)² + 0.202(948.68) + 900 \n" ); document.write( " * C(948.68) ≈ 900 + 202 + 900 = 1992 RM\r \n" ); document.write( "\n" ); document.write( "5. **Show that it is a Minimum:** \n" ); document.write( " * Find the second derivative of A(x): \n" ); document.write( " * A'(x) = 0.001 - 900x⁻² \n" ); document.write( " * A''(x) = 1800x⁻³ = 1800 / x³ \n" ); document.write( " * Since x > 0, A''(x) > 0. This means the function is concave up, and we have a minimum.\r \n" ); document.write( "\n" ); document.write( "**Conclusion:**\r \n" ); document.write( "\n" ); document.write( "* **(a)** The total cost is C(x) = 0.001x² + 0.202x + 900, and the average total cost is A(x) = 0.001x + 0.202 + 900 / x. \n" ); document.write( "* **(b)** When the average total cost per kilometer is minimized (at x ≈ 948.68 km), the total cost is approximately RM 1992. \n" ); document.write( " \n" ); document.write( " |