document.write( "Question 1209827: Find a closed form for
\n" );
document.write( "S_n = 1! \cdot (1^2 + 1) + 2! \cdot (2^2 + 2) + \dots + n! \cdot (n^2 + n).\]
\n" );
document.write( "for any integer n \ge 1. Your response should have a factorial. \n" );
document.write( "
Algebra.Com's Answer #850692 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! Let's find a closed form for the sum S_n.\r \n" ); document.write( "\n" ); document.write( "**1. Analyze the General Term**\r \n" ); document.write( "\n" ); document.write( "The general term of the sum is:\r \n" ); document.write( "\n" ); document.write( "T_k = k! * (k² + k)\r \n" ); document.write( "\n" ); document.write( "**2. Simplify the General Term**\r \n" ); document.write( "\n" ); document.write( "We can factor out k from the parentheses:\r \n" ); document.write( "\n" ); document.write( "T_k = k! * k(k + 1)\r \n" ); document.write( "\n" ); document.write( "Rearrange the terms:\r \n" ); document.write( "\n" ); document.write( "T_k = k * (k + 1) * k!\r \n" ); document.write( "\n" ); document.write( "Notice that (k + 1) * k! = (k + 1)!\r \n" ); document.write( "\n" ); document.write( "So, T_k = k * (k + 1)!\r \n" ); document.write( "\n" ); document.write( "**3. Rewrite k**\r \n" ); document.write( "\n" ); document.write( "We can rewrite k as (k + 2 - 2):\r \n" ); document.write( "\n" ); document.write( "T_k = (k + 2 - 2) * (k + 1)!\r \n" ); document.write( "\n" ); document.write( "Distribute:\r \n" ); document.write( "\n" ); document.write( "T_k = (k + 2) * (k + 1)! - 2 * (k + 1)!\r \n" ); document.write( "\n" ); document.write( "Recognize that (k + 2) * (k + 1)! = (k + 2)!\r \n" ); document.write( "\n" ); document.write( "So, T_k = (k + 2)! - 2 * (k + 1)!\r \n" ); document.write( "\n" ); document.write( "**4. Apply the Summation**\r \n" ); document.write( "\n" ); document.write( "S_n = Σ[k=1 to n] T_k\r \n" ); document.write( "\n" ); document.write( "S_n = Σ[k=1 to n] [(k + 2)! - 2 * (k + 1)!]\r \n" ); document.write( "\n" ); document.write( "S_n = [3! - 2 * 2!] + [4! - 2 * 3!] + [5! - 2 * 4!] + ... + [(n + 2)! - 2 * (n + 1)!]\r \n" ); document.write( "\n" ); document.write( "**5. Observe the Telescoping Pattern**\r \n" ); document.write( "\n" ); document.write( "Notice that many terms cancel out:\r \n" ); document.write( "\n" ); document.write( "S_n = [3! - 2 * 2!] + [4! - 2 * 3!] + [5! - 2 * 4!] + ... + [(n + 2)! - 2 * (n + 1)!]\r \n" ); document.write( "\n" ); document.write( "S_n = -2 * 2! + (3! - 2 * 3!) + (4! - 2 * 4!) + ... + (n + 2)!\r \n" ); document.write( "\n" ); document.write( "S_n = -2 * 2! -3! -4! ... +(n+2)!\r \n" ); document.write( "\n" ); document.write( "S_n = (n + 2)! - (2(2!) + 3! + 4! + ... + (n+1)!)\r \n" ); document.write( "\n" ); document.write( "Now let's examine a different approach.\r \n" ); document.write( "\n" ); document.write( "S_n = Σ[k=1 to n] k * (k + 1)!\r \n" ); document.write( "\n" ); document.write( "We can rewrite k as (k + 1 - 1):\r \n" ); document.write( "\n" ); document.write( "S_n = Σ[k=1 to n] (k + 1 - 1) * (k + 1)!\r \n" ); document.write( "\n" ); document.write( "S_n = Σ[k=1 to n] [(k + 1) * (k + 1)! - (k + 1)!]\r \n" ); document.write( "\n" ); document.write( "S_n = Σ[k=1 to n] [(k + 2)! - (k + 1)!]\r \n" ); document.write( "\n" ); document.write( "This is a telescoping sum:\r \n" ); document.write( "\n" ); document.write( "S_n = [3! - 2!] + [4! - 3!] + [5! - 4!] + ... + [(n + 2)! - (n + 1)!]\r \n" ); document.write( "\n" ); document.write( "S_n = (n + 2)! - 2!\r \n" ); document.write( "\n" ); document.write( "S_n = (n + 2)! - 2\r \n" ); document.write( "\n" ); document.write( "**Final Answer:**\r \n" ); document.write( "\n" ); document.write( "S_n = (n + 2)! - 2 \n" ); document.write( " \n" ); document.write( " |