document.write( "Question 1174395: Factory A has produced a product for the common users. The total variable cost per unit is
\n" ); document.write( "RM 10. The fixed cost is RM 6 200 in a year and the yearly revenue (in RM) is derived by
\n" ); document.write( "function R(x) = R(x) = - 2x^2+260x+500, given that x is the number of productions.\r
\n" ); document.write( "\n" ); document.write( "(a) Find the production level for breakeven point of factory A.\r
\n" ); document.write( "\n" ); document.write( "(b) State the range of number of productions where the factory A should produce to have profit.\r
\n" ); document.write( "\n" ); document.write( "(c) State the range of number of productions when the factory A has a loss more than RM 500.
\n" ); document.write( "

Algebra.Com's Answer #850691 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
Let's break down this problem step-by-step.\r
\n" ); document.write( "\n" ); document.write( "**(a) Breakeven Point**\r
\n" ); document.write( "\n" ); document.write( "1. **Cost Function:**
\n" ); document.write( " * Variable Cost (VC) = 10x
\n" ); document.write( " * Fixed Cost (FC) = 6200
\n" ); document.write( " * Total Cost (C(x)) = VC + FC = 10x + 6200\r
\n" ); document.write( "\n" ); document.write( "2. **Revenue Function:**
\n" ); document.write( " * R(x) = -2x² + 260x + 500\r
\n" ); document.write( "\n" ); document.write( "3. **Breakeven Point:**
\n" ); document.write( " * Breakeven occurs when Revenue (R(x)) = Cost (C(x)).
\n" ); document.write( " * -2x² + 260x + 500 = 10x + 6200
\n" ); document.write( " * -2x² + 250x - 5700 = 0
\n" ); document.write( " * Divide by -2: x² - 125x + 2850 = 0\r
\n" ); document.write( "\n" ); document.write( "4. **Solve the Quadratic Equation:**
\n" ); document.write( " * We can use the quadratic formula: x = [-b ± √(b² - 4ac)] / 2a
\n" ); document.write( " * In this case, a = 1, b = -125, c = 2850.
\n" ); document.write( " * x = [125 ± √((-125)² - 4 * 1 * 2850)] / 2
\n" ); document.write( " * x = [125 ± √(15625 - 11400)] / 2
\n" ); document.write( " * x = [125 ± √4225] / 2
\n" ); document.write( " * x = [125 ± 65] / 2\r
\n" ); document.write( "\n" ); document.write( " * x1 = (125 + 65) / 2 = 190 / 2 = 95
\n" ); document.write( " * x2 = (125 - 65) / 2 = 60 / 2 = 30\r
\n" ); document.write( "\n" ); document.write( " * **Answer (a):** The breakeven points are at production levels of 30 units and 95 units.\r
\n" ); document.write( "\n" ); document.write( "**(b) Range of Production for Profit**\r
\n" ); document.write( "\n" ); document.write( "1. **Profit Function:**
\n" ); document.write( " * Profit (P(x)) = R(x) - C(x)
\n" ); document.write( " * P(x) = (-2x² + 260x + 500) - (10x + 6200)
\n" ); document.write( " * P(x) = -2x² + 250x - 5700\r
\n" ); document.write( "\n" ); document.write( "2. **Profit Occurs When P(x) > 0:**
\n" ); document.write( " * -2x² + 250x - 5700 > 0
\n" ); document.write( " * x² - 125x + 2850 < 0 (divide by -2 and reverse the inequality)\r
\n" ); document.write( "\n" ); document.write( "3. **Use the Breakeven Points:**
\n" ); document.write( " * We already found the breakeven points at x = 30 and x = 95.
\n" ); document.write( " * Since the parabola opens downward (-2x²), the profit is positive between the breakeven points.\r
\n" ); document.write( "\n" ); document.write( " * **Answer (b):** The factory should produce between 30 and 95 units to have a profit (30 < x < 95).\r
\n" ); document.write( "\n" ); document.write( "**(c) Range of Production for Loss > RM 500**\r
\n" ); document.write( "\n" ); document.write( "1. **Loss Function:**
\n" ); document.write( " * Loss occurs when P(x) < 0.
\n" ); document.write( " * We want to find when P(x) < -500.\r
\n" ); document.write( "\n" ); document.write( "2. **Set Up Inequality:**
\n" ); document.write( " * -2x² + 250x - 5700 < -500
\n" ); document.write( " * -2x² + 250x - 5200 < 0
\n" ); document.write( " * x² - 125x + 2600 > 0\r
\n" ); document.write( "\n" ); document.write( "3. **Solve the Quadratic Equation:**
\n" ); document.write( " * x² - 125x + 2600 = 0
\n" ); document.write( " * Use the quadratic formula:
\n" ); document.write( " * x = [125 ± √((-125)² - 4 * 1 * 2600)] / 2
\n" ); document.write( " * x = [125 ± √(15625 - 10400)] / 2
\n" ); document.write( " * x = [125 ± √5225] / 2
\n" ); document.write( " * x = [125 ± 72.28] / 2\r
\n" ); document.write( "\n" ); document.write( " * x1 = (125 + 72.28) / 2 ≈ 98.64
\n" ); document.write( " * x2 = (125 - 72.28) / 2 ≈ 26.36\r
\n" ); document.write( "\n" ); document.write( "4. **Determine the Range:**
\n" ); document.write( " * Since the parabola opens upward, the inequality is satisfied when x < 26.36 or x > 98.64.\r
\n" ); document.write( "\n" ); document.write( " * **Answer (c):** The factory has a loss greater than RM 500 when the number of productions is less than 26.36 units or greater than 98.64 units (x < 26.36 or x > 98.64).
\n" ); document.write( "
\n" ); document.write( "
\n" );