document.write( "Question 1174702: Q.No.4. (a) Sixty percent of all buyers of new cars choose automatic transmissions. For a group of five buyers of new cars, calculate the mean and standard deviation for the number of buyers choosing automatic transmissions. Also calculate the complete distribution.
\n" ); document.write( "(b) What is the probability that a poker hand of 5 cards contain exactly 2 king.
\n" ); document.write( "Q: If x is a passion random variable with parameter value 1.5, find p(x=1) and P (X = 7).
\n" ); document.write( "

Algebra.Com's Answer #850636 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
Let's break down each part of this problem.\r
\n" ); document.write( "\n" ); document.write( "**(a) Automatic Transmissions**\r
\n" ); document.write( "\n" ); document.write( "* **Binomial Distribution:** This situation follows a binomial distribution because:
\n" ); document.write( " * There are a fixed number of trials (n = 5 buyers).
\n" ); document.write( " * Each trial has only two outcomes (automatic or not).
\n" ); document.write( " * The probability of success (automatic) is constant (p = 0.6).
\n" ); document.write( " * The trials are independent.\r
\n" ); document.write( "\n" ); document.write( "* **Mean (μ):**
\n" ); document.write( " * μ = np = 5 * 0.6 = 3\r
\n" ); document.write( "\n" ); document.write( "* **Standard Deviation (σ):**
\n" ); document.write( " * σ = √(np(1-p)) = √(5 * 0.6 * 0.4) = √1.2 ≈ 1.095\r
\n" ); document.write( "\n" ); document.write( "* **Complete Distribution:**
\n" ); document.write( " * P(X = k) = (n choose k) * p^k * (1-p)^(n-k)
\n" ); document.write( " * Where (n choose k) = n! / (k! * (n-k)!)\r
\n" ); document.write( "\n" ); document.write( " * P(X = 0) = (5 choose 0) * (0.6)^0 * (0.4)^5 = 1 * 1 * 0.01024 = 0.01024
\n" ); document.write( " * P(X = 1) = (5 choose 1) * (0.6)^1 * (0.4)^4 = 5 * 0.6 * 0.0256 = 0.0768
\n" ); document.write( " * P(X = 2) = (5 choose 2) * (0.6)^2 * (0.4)^3 = 10 * 0.36 * 0.064 = 0.2304
\n" ); document.write( " * P(X = 3) = (5 choose 3) * (0.6)^3 * (0.4)^2 = 10 * 0.216 * 0.16 = 0.3456
\n" ); document.write( " * P(X = 4) = (5 choose 4) * (0.6)^4 * (0.4)^1 = 5 * 0.1296 * 0.4 = 0.2592
\n" ); document.write( " * P(X = 5) = (5 choose 5) * (0.6)^5 * (0.4)^0 = 1 * 0.07776 * 1 = 0.07776\r
\n" ); document.write( "\n" ); document.write( "**(b) Poker Hand with 2 Kings**\r
\n" ); document.write( "\n" ); document.write( "* **Total Possible Hands:** (52 choose 5) = 2,598,960
\n" ); document.write( "* **Ways to Choose 2 Kings:** (4 choose 2) = 6
\n" ); document.write( "* **Ways to Choose 3 Other Cards (not Kings):** (48 choose 3) = 17,296
\n" ); document.write( "* **Probability:** (6 * 17,296) / 2,598,960 ≈ 0.0399\r
\n" ); document.write( "\n" ); document.write( "**(c) Poisson Random Variable**\r
\n" ); document.write( "\n" ); document.write( "* **Poisson Distribution:** X ~ Poisson(λ), where λ = 1.5.
\n" ); document.write( "* **Formula:** P(X = k) = (e^(-λ) * λ^k) / k!\r
\n" ); document.write( "\n" ); document.write( "* **P(X = 1):**
\n" ); document.write( " * P(X = 1) = (e^(-1.5) * 1.5^1) / 1!
\n" ); document.write( " * P(X = 1) ≈ (0.2231 * 1.5) / 1 ≈ 0.3347\r
\n" ); document.write( "\n" ); document.write( "* **P(X = 7):**
\n" ); document.write( " * P(X = 7) = (e^(-1.5) * 1.5^7) / 7!
\n" ); document.write( " * P(X=7) = (0.2231 * 17.0859)/5040
\n" ); document.write( " * P(X=7) = 3.811/5040
\n" ); document.write( " * P(X = 7) ≈ 0.000756
\n" ); document.write( "
\n" ); document.write( "
\n" );