document.write( "Question 1175536: A ball is thrown a projectile motion. It is known that the horizontal distance (range) the ball can travel is given by R = v^2/g sin 2x, where r is the range (in feet), v^0 is the initial speed (in/ft/s), x is the angle of elevation the ball is thrown, and g=32ft/s^2 is the acceleration due to gravity.\r
\n" ); document.write( "\n" ); document.write( "a. Express the new range in terms of the original range when an angle x (0\n" ); document.write( "\n" ); document.write( "b. If a ball travels a horizontal distance of 20 ft when kicked at an angle of x with initial speed 20 √2ft/s, find the horizontal distance it can travel when you double x.
\n" ); document.write( "Hint: use result of item (a)
\n" ); document.write( "

Algebra.Com's Answer #850612 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
Let's tackle this projectile motion problem.\r
\n" ); document.write( "\n" ); document.write( "**a) Expressing the New Range in Terms of the Original Range**\r
\n" ); document.write( "\n" ); document.write( "* **Original Range:** R = (v^2 / g) * sin(2x)
\n" ); document.write( "* **New Angle:** 90° - x\r
\n" ); document.write( "\n" ); document.write( "Let's find the new range, R', with the new angle:\r
\n" ); document.write( "\n" ); document.write( "* **New Range:** R' = (v^2 / g) * sin(2(90° - x))
\n" ); document.write( "* R' = (v^2 / g) * sin(180° - 2x)\r
\n" ); document.write( "\n" ); document.write( "Now, we use the trigonometric identity: sin(180° - θ) = sin(θ)\r
\n" ); document.write( "\n" ); document.write( "* R' = (v^2 / g) * sin(2x)\r
\n" ); document.write( "\n" ); document.write( "Comparing this to the original range, R:\r
\n" ); document.write( "\n" ); document.write( "* R' = R\r
\n" ); document.write( "\n" ); document.write( "**Therefore, the new range is the same as the original range when the angle is changed from x to 90° - x.**\r
\n" ); document.write( "\n" ); document.write( "**b) Finding the Horizontal Distance When Doubling x**\r
\n" ); document.write( "\n" ); document.write( "1. **Find the original angle x:**
\n" ); document.write( " * We're given: R = 20 ft, v = 20√2 ft/s, g = 32 ft/s²
\n" ); document.write( " * R = (v² / g) * sin(2x)
\n" ); document.write( " * 20 = ((20√2)² / 32) * sin(2x)
\n" ); document.write( " * 20 = (800 / 32) * sin(2x)
\n" ); document.write( " * 20 = 25 * sin(2x)
\n" ); document.write( " * sin(2x) = 20 / 25 = 4 / 5 = 0.8
\n" ); document.write( " * 2x = arcsin(0.8)
\n" ); document.write( " * 2x ≈ 53.13°
\n" ); document.write( " * x ≈ 26.565°\r
\n" ); document.write( "\n" ); document.write( "2. **Find the new angle 2x:**
\n" ); document.write( " * The new angle is 2x, which we already found to be approximately 53.13°.\r
\n" ); document.write( "\n" ); document.write( "3. **Find the new range R'':**
\n" ); document.write( " * R'' = (v² / g) * sin(2(2x))
\n" ); document.write( " * R'' = (v² / g) * sin(4x)
\n" ); document.write( " * We know 2x ≈ 53.13°, so 4x ≈ 106.26°
\n" ); document.write( " * R'' = ((20√2)² / 32) * sin(106.26°)
\n" ); document.write( " * R'' = 25 * sin(106.26°)
\n" ); document.write( " * R'' ≈ 25 * 0.96
\n" ); document.write( " * R'' ≈ 24 ft\r
\n" ); document.write( "\n" ); document.write( "**Therefore, the horizontal distance the ball can travel when you double x is approximately 24 feet.**
\n" ); document.write( "
\n" ); document.write( "
\n" );