document.write( "Question 1209803: Let
\n" ); document.write( "a + ar + ar^2 + ar^3 + \dotsb
\n" ); document.write( "be an infinite geometric series. The sum of the series is 9. The sum of the cubes of all the terms is 36. Find the common ratio.
\n" ); document.write( "

Algebra.Com's Answer #850593 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
Let's solve this problem step-by-step.\r
\n" ); document.write( "\n" ); document.write( "**1. Sum of the Infinite Geometric Series**\r
\n" ); document.write( "\n" ); document.write( "* The sum of an infinite geometric series is given by: S = a / (1 - r)
\n" ); document.write( "* We are given that the sum is 9: a / (1 - r) = 9\r
\n" ); document.write( "\n" ); document.write( "**2. Sum of the Cubes of the Terms**\r
\n" ); document.write( "\n" ); document.write( "* The terms of the series are: a, ar, ar², ar³, ...
\n" ); document.write( "* Cubing each term: a³, a³r³, a³r⁶, a³r⁹, ...
\n" ); document.write( "* This is also a geometric series with:
\n" ); document.write( " * First term: a³
\n" ); document.write( " * Common ratio: r³
\n" ); document.write( "* The sum of this series is: a³ / (1 - r³)
\n" ); document.write( "* We are given that this sum is 36: a³ / (1 - r³) = 36\r
\n" ); document.write( "\n" ); document.write( "**3. Solve the System of Equations**\r
\n" ); document.write( "\n" ); document.write( "* From a / (1 - r) = 9, we get: a = 9(1 - r)
\n" ); document.write( "* Substitute this into a³ / (1 - r³) = 36:
\n" ); document.write( " * [9(1 - r)]³ / (1 - r³) = 36
\n" ); document.write( " * 729(1 - r)³ / (1 - r³) = 36
\n" ); document.write( " * (1 - r)³ / (1 - r³) = 36 / 729 = 4 / 81\r
\n" ); document.write( "\n" ); document.write( "* Factor (1 - r³):
\n" ); document.write( " * (1 - r³) = (1 - r)(1 + r + r²)
\n" ); document.write( "* Substitute this into the equation:
\n" ); document.write( " * (1 - r)³ / [(1 - r)(1 + r + r²)] = 4 / 81
\n" ); document.write( " * (1 - r)² / (1 + r + r²) = 4 / 81\r
\n" ); document.write( "\n" ); document.write( "* Take the square root of both sides:
\n" ); document.write( " * (1 - r) / √(1 + r + r²) = ± 2 / 9\r
\n" ); document.write( "\n" ); document.write( "* We'll assume r is positive, so we'll take the positive root.\r
\n" ); document.write( "\n" ); document.write( "* (1 - r) / √(1 + r + r²) = 2 / 9
\n" ); document.write( "* 9(1 - r) = 2√(1 + r + r²)
\n" ); document.write( "* 81(1 - r)² = 4(1 + r + r²)
\n" ); document.write( "* 81(1 - 2r + r²) = 4 + 4r + 4r²
\n" ); document.write( "* 81 - 162r + 81r² = 4 + 4r + 4r²
\n" ); document.write( "* 77r² - 166r + 77 = 0\r
\n" ); document.write( "\n" ); document.write( "* Solve the quadratic equation:
\n" ); document.write( " * r = [166 ± √(166² - 4 * 77 * 77)] / (2 * 77)
\n" ); document.write( " * r = [166 ± √(27556 - 23716)] / 154
\n" ); document.write( " * r = [166 ± √3840] / 154
\n" ); document.write( " * r = [166 ± 62.0967] / 154\r
\n" ); document.write( "\n" ); document.write( "* We have two possible values for r:
\n" ); document.write( " * r1 = (166 + 62.0967) / 154 ≈ 1.481
\n" ); document.write( " * r2 = (166 - 62.0967) / 154 ≈ 0.675\r
\n" ); document.write( "\n" ); document.write( "* Since the series is convergent, we must have |r| < 1. Therefore, r = 0.675.\r
\n" ); document.write( "\n" ); document.write( "**4. Check the Solution**\r
\n" ); document.write( "\n" ); document.write( "* r = 0.675 = 27/40
\n" ); document.write( "* a = 9(1 - r) = 9(1 - 27/40) = 9(13/40) = 117/40
\n" ); document.write( "* a³ / (1 - r³) = (117/40)³ / (1 - (27/40)³) ≈ 36\r
\n" ); document.write( "\n" ); document.write( "**Final Answer:** The common ratio is 27/40 or 0.675.
\n" ); document.write( "
\n" ); document.write( "
\n" );