document.write( "Question 1209805: Let a_1 + a_2 + a_3 + dotsb be an infinite geometric series with positive terms. If a_2 = 10, then find the smallest possible value of
\n" );
document.write( "a_1 + a_2 + a_3. \n" );
document.write( "
Algebra.Com's Answer #850591 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! Let's solve this problem step-by-step.\r \n" ); document.write( "\n" ); document.write( "Understanding Geometric Series\r \n" ); document.write( "\n" ); document.write( "A geometric series has the form: a, ar, ar², ar³, ... \n" ); document.write( "a is the first term (a_1) \n" ); document.write( "r is the common ratio \n" ); document.write( "a_n = ar^(n-1) \n" ); document.write( "Given Information\r \n" ); document.write( "\n" ); document.write( "The series has positive terms, so a > 0 and r > 0. \n" ); document.write( "a_2 = 10 \n" ); document.write( "Finding a_1 and r\r \n" ); document.write( "\n" ); document.write( "a_2 = ar^(2-1) = ar \n" ); document.write( "ar = 10 \n" ); document.write( "a = 10/r \n" ); document.write( "Finding a_1 + a_2 + a_3\r \n" ); document.write( "\n" ); document.write( "a_1 + a_2 + a_3 = a + ar + ar² \n" ); document.write( "Substitute a = 10/r: \n" ); document.write( "(10/r) + 10 + 10r \n" ); document.write( "Minimizing a_1 + a_2 + a_3\r \n" ); document.write( "\n" ); document.write( "Let S = (10/r) + 10 + 10r. We want to minimize S.\r \n" ); document.write( "\n" ); document.write( "Take the derivative with respect to r:\r \n" ); document.write( "\n" ); document.write( "dS/dr = -10/r² + 10 \n" ); document.write( "Set the derivative to zero and solve for r:\r \n" ); document.write( "\n" ); document.write( "-10/r² + 10 = 0 \n" ); document.write( "10 = 10/r² \n" ); document.write( "r² = 1 \n" ); document.write( "r = ±1 \n" ); document.write( "Consider positive r:\r \n" ); document.write( "\n" ); document.write( "Since the terms are positive, r must be positive. Therefore, r = 1. \n" ); document.write( "Check the second derivative:\r \n" ); document.write( "\n" ); document.write( "d²S/dr² = 20/r³ \n" ); document.write( "When r = 1, d²S/dr² = 20 > 0, which means we have a minimum. \n" ); document.write( "Find a_1:\r \n" ); document.write( "\n" ); document.write( "a = 10/r = 10/1 = 10 \n" ); document.write( "Find a_1 + a_2 + a_3:\r \n" ); document.write( "\n" ); document.write( "a_1 + a_2 + a_3 = 10 + 10 + 10 = 30 \n" ); document.write( "However, we need to consider the behavior of the function as r approaches 0 or infinity.\r \n" ); document.write( "\n" ); document.write( "As r approaches 0, 10/r approaches infinity, so S approaches infinity. \n" ); document.write( "As r approaches infinity, 10r approaches infinity, so S approaches infinity. \n" ); document.write( "Therefore, the minimum value of a_1 + a_2 + a_3 occurs when r = 1, and the minimum value is 30.\r \n" ); document.write( "\n" ); document.write( "Final Answer: The smallest possible value of a_1 + a_2 + a_3 is 30. \n" ); document.write( " |