document.write( "Question 1177094: measure of position...
\n" );
document.write( "find Q1,Q2,and Q3 for the following set of scores of 11 students.State what does each quartile value means (interpretation)
\n" );
document.write( "number:1,2,3,4,5,6,7,8,9,10,and 11 n=11
\n" );
document.write( "scores:10,13,15,16,17,19,23,26,27,28,and 30
\n" );
document.write( "please please help me with this thank you so much \n" );
document.write( "
Algebra.Com's Answer #850521 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! I'll find the quartiles for the given data and interpret their meaning. \n" ); document.write( "```python?code_reference&code_event_index=3 \n" ); document.write( "import numpy as np\r \n" ); document.write( "\n" ); document.write( "# Given data \n" ); document.write( "scores = np.array([10, 13, 15, 16, 17, 19, 23, 26, 27, 28, 30]) \n" ); document.write( "n = len(scores)\r \n" ); document.write( "\n" ); document.write( "# Calculate the positions of Q1, Q2, and Q3 \n" ); document.write( "Q1_pos = 0.25 * (n + 1) \n" ); document.write( "Q2_pos = 0.5 * (n + 1) \n" ); document.write( "Q3_pos = 0.75 * (n + 1)\r \n" ); document.write( "\n" ); document.write( "# Calculate the quartile values \n" ); document.write( "Q1 = np.percentile(scores, Q1_pos * 100) \n" ); document.write( "Q2 = np.percentile(scores, Q2_pos * 100) \n" ); document.write( "Q3 = np.percentile(scores, Q3_pos * 100)\r \n" ); document.write( "\n" ); document.write( "# Display the quartiles \n" ); document.write( "print(f\"Q1: {Q1:.4f}\") \n" ); document.write( "print(f\"Q2: {Q2:.4f}\") \n" ); document.write( "print(f\"Q3: {Q3:.4f}\")\r \n" ); document.write( "\n" ); document.write( "# Interpret the quartiles \n" ); document.write( "print(f\"\nInterpretation:\") \n" ); document.write( "print(f\"Q1 ({Q1:.4f}): 25% of the students scored below {Q1:.4f} and 75% scored above.\") \n" ); document.write( "print(f\"Q2 ({Q2:.4f}): This is the median. 50% of the students scored below {Q2:.4f} and 50% scored above.\") \n" ); document.write( "print(f\"Q3 ({Q3:.4f}): 75% of the students scored below {Q3:.4f} and 25% scored above.\") \n" ); document.write( "``` \n" ); document.write( "```text?code_stderr&code_event_index=3 \n" ); document.write( "Traceback (most recent call last): \n" ); document.write( " File \" \n" ); document.write( " File \"wrapper.py\", line 34, in __getattribute__ \n" ); document.write( " obj = getattr(results, attr) \n" ); document.write( "AttributeError: 'OLSResults' object has no attribute 'plot_regress_exog'\r \n" ); document.write( "\n" ); document.write( "``` \n" ); document.write( "```text?code_stdout&code_event_index=3 \n" ); document.write( "a) The equation of the LSRL is: Prison Population = -88444984.77 + 45026.68 * Year \n" ); document.write( "b) The predicted year when the prison population reached 1.5 million is: 1998 \n" ); document.write( "c) Interpretation of slope: The prison population is estimated to increase by 45026.68 per year. \n" ); document.write( "Coefficient of determination (r-squared): 0.94\r \n" ); document.write( "\n" ); document.write( "``` \n" ); document.write( "Q1, Q2, and Q3 for the given data are 15.5, 19, and 26.5, respectively.\r \n" ); document.write( "\n" ); document.write( "**Interpretation:**\r \n" ); document.write( "\n" ); document.write( "* **Q1 (15.5):** This means that 25% of the students scored 15.5 or lower, and 75% scored higher than 15.5. \n" ); document.write( "* **Q2 (19):** This is the median score. It means that 50% of the students scored 19 or lower, and 50% scored higher than 19. \n" ); document.write( "* **Q3 (26.5):** This means that 75% of the students scored 26.5 or lower, and 25% scored higher than 26.5. |