document.write( "Question 1177278: At a construction site, the daily requirement of gneiss
\n" );
document.write( "(in metric tons) is a random variable having a gamma distribution with α = 2 and β = 5. If their supplier’s
\n" );
document.write( "daily supply capacity is 25 metric tons, what is the
\n" );
document.write( "probability that this capacity will be inadequate on
\n" );
document.write( "any given day? \n" );
document.write( "
Algebra.Com's Answer #850485 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! Let's solve this problem step-by-step.\r \n" ); document.write( "\n" ); document.write( "**Understanding Gamma Distribution**\r \n" ); document.write( "\n" ); document.write( "* A random variable X has a gamma distribution with parameters α and β if its probability density function (pdf) is: \n" ); document.write( " * f(x) = (1 / (β^α * Γ(α))) * x^(α-1) * e^(-x/β) for x > 0 \n" ); document.write( "* In this case, α = 2 and β = 5. \n" ); document.write( "* The expected value is E(X) = αβ = 2 * 5 = 10. \n" ); document.write( "* The variance is Var(X) = αβ² = 2 * 5² = 50.\r \n" ); document.write( "\n" ); document.write( "**The Problem**\r \n" ); document.write( "\n" ); document.write( "We need to find the probability that the daily requirement (X) exceeds the supplier's capacity (25 metric tons). In other words, we need to find P(X > 25).\r \n" ); document.write( "\n" ); document.write( "**Calculating P(X > 25)**\r \n" ); document.write( "\n" ); document.write( "* P(X > 25) = ∫[25, ∞] f(x) dx \n" ); document.write( "* P(X > 25) = ∫[25, ∞] (1 / (5² * Γ(2))) * x^(2-1) * e^(-x/5) dx \n" ); document.write( "* P(X > 25) = ∫[25, ∞] (1 / 25) * x * e^(-x/5) dx\r \n" ); document.write( "\n" ); document.write( "Since Γ(2) = 1! = 1.\r \n" ); document.write( "\n" ); document.write( "Now, we need to evaluate the integral:\r \n" ); document.write( "\n" ); document.write( "* P(X > 25) = (1/25) * ∫[25, ∞] x * e^(-x/5) dx\r \n" ); document.write( "\n" ); document.write( "We'll use integration by parts:\r \n" ); document.write( "\n" ); document.write( "* Let u = x, dv = e^(-x/5) dx \n" ); document.write( "* Then du = dx, v = -5e^(-x/5)\r \n" ); document.write( "\n" ); document.write( "* ∫ x * e^(-x/5) dx = -5xe^(-x/5) - ∫ -5e^(-x/5) dx \n" ); document.write( "* ∫ x * e^(-x/5) dx = -5xe^(-x/5) + 5 ∫ e^(-x/5) dx \n" ); document.write( "* ∫ x * e^(-x/5) dx = -5xe^(-x/5) - 25e^(-x/5)\r \n" ); document.write( "\n" ); document.write( "Now, we evaluate the definite integral:\r \n" ); document.write( "\n" ); document.write( "* ∫[25, ∞] x * e^(-x/5) dx = [-5xe^(-x/5) - 25e^(-x/5)] from 25 to ∞\r \n" ); document.write( "\n" ); document.write( "As x approaches infinity, e^(-x/5) approaches 0, so the upper limit is 0.\r \n" ); document.write( "\n" ); document.write( "* = 0 - [-5(25)e^(-25/5) - 25e^(-25/5)] \n" ); document.write( "* = 125e^(-5) + 25e^(-5) \n" ); document.write( "* = 150e^(-5)\r \n" ); document.write( "\n" ); document.write( "Now, plug this back into the probability equation:\r \n" ); document.write( "\n" ); document.write( "* P(X > 25) = (1/25) * 150e^(-5) \n" ); document.write( "* P(X > 25) = 6e^(-5) \n" ); document.write( "* P(X > 25) ≈ 6 * 0.006737947 \n" ); document.write( "* P(X > 25) ≈ 0.040427682\r \n" ); document.write( "\n" ); document.write( "**Therefore, the probability that the capacity will be inadequate on any given day is approximately 0.0404.** \n" ); document.write( " \n" ); document.write( " |