document.write( "Question 1177295: Let X be a random variable with pdf f (x) = kx^2 where 0 ≤ x ≤ 1.
\n" ); document.write( "(a) Find k.
\n" ); document.write( "(b) Find E(X) and Var(X).
\n" ); document.write( "(c) Find MX(t). Using the mgf, find E(X).\r
\n" ); document.write( "\n" ); document.write( "Thank You
\n" ); document.write( "

Algebra.Com's Answer #850478 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
**(a) Find k**\r
\n" ); document.write( "\n" ); document.write( "Since f(x) is a probability density function (pdf), the integral of f(x) over its domain must equal 1:\r
\n" ); document.write( "\n" ); document.write( "* ∫[0, 1] kx² dx = 1\r
\n" ); document.write( "\n" ); document.write( "Integrate:\r
\n" ); document.write( "\n" ); document.write( "* [ (kx³/3) ] from 0 to 1 = 1
\n" ); document.write( "* (k/3) - (0) = 1
\n" ); document.write( "* k/3 = 1
\n" ); document.write( "* k = 3\r
\n" ); document.write( "\n" ); document.write( "Therefore, f(x) = 3x² for 0 ≤ x ≤ 1.\r
\n" ); document.write( "\n" ); document.write( "**(b) Find E(X) and Var(X)**\r
\n" ); document.write( "\n" ); document.write( "1. **Find E(X):**\r
\n" ); document.write( "\n" ); document.write( " * E(X) = ∫[0, 1] x * f(x) dx
\n" ); document.write( " * E(X) = ∫[0, 1] x * (3x²) dx
\n" ); document.write( " * E(X) = ∫[0, 1] 3x³ dx
\n" ); document.write( " * E(X) = [ (3x⁴/4) ] from 0 to 1
\n" ); document.write( " * E(X) = (3/4) - (0)
\n" ); document.write( " * E(X) = 3/4\r
\n" ); document.write( "\n" ); document.write( "2. **Find E(X²):**\r
\n" ); document.write( "\n" ); document.write( " * E(X²) = ∫[0, 1] x² * f(x) dx
\n" ); document.write( " * E(X²) = ∫[0, 1] x² * (3x²) dx
\n" ); document.write( " * E(X²) = ∫[0, 1] 3x⁴ dx
\n" ); document.write( " * E(X²) = [ (3x⁵/5) ] from 0 to 1
\n" ); document.write( " * E(X²) = (3/5) - (0)
\n" ); document.write( " * E(X²) = 3/5\r
\n" ); document.write( "\n" ); document.write( "3. **Find Var(X):**\r
\n" ); document.write( "\n" ); document.write( " * Var(X) = E(X²) - [E(X)]²
\n" ); document.write( " * Var(X) = 3/5 - (3/4)²
\n" ); document.write( " * Var(X) = 3/5 - 9/16
\n" ); document.write( " * Var(X) = (48 - 45) / 80
\n" ); document.write( " * Var(X) = 3/80\r
\n" ); document.write( "\n" ); document.write( "**(c) Find MX(t) and Use the mgf to Find E(X)**\r
\n" ); document.write( "\n" ); document.write( "1. **Find MX(t) (Moment Generating Function):**\r
\n" ); document.write( "\n" ); document.write( " * MX(t) = E(e^(tX)) = ∫[0, 1] e^(tx) * f(x) dx
\n" ); document.write( " * MX(t) = ∫[0, 1] e^(tx) * (3x²) dx\r
\n" ); document.write( "\n" ); document.write( " We use integration by parts twice. Let u = 3x², dv = e^(tx) dx.
\n" ); document.write( " Then du = 6x dx, v = e^(tx)/t.\r
\n" ); document.write( "\n" ); document.write( " * MX(t) = [ 3x²e^(tx)/t ] from 0 to 1 - ∫[0, 1] 6xe^(tx)/t dx
\n" ); document.write( " * MX(t) = 3e^t/t - (6/t) ∫[0, 1] xe^(tx) dx\r
\n" ); document.write( "\n" ); document.write( " Now, integrate ∫xe^(tx) dx by parts again. Let u = x, dv = e^(tx) dx.
\n" ); document.write( " Then du = dx, v = e^(tx)/t.\r
\n" ); document.write( "\n" ); document.write( " * ∫xe^(tx) dx = [ xe^(tx)/t ] from 0 to 1 - ∫[0, 1] e^(tx)/t dx
\n" ); document.write( " * ∫xe^(tx) dx = e^t/t - [ e^(tx)/t² ] from 0 to 1
\n" ); document.write( " * ∫xe^(tx) dx = e^t/t - (e^t/t² - 1/t²)
\n" ); document.write( " * ∫xe^(tx) dx = e^t/t - e^t/t² + 1/t²\r
\n" ); document.write( "\n" ); document.write( " Substitute back into MX(t):\r
\n" ); document.write( "\n" ); document.write( " * MX(t) = 3e^t/t - (6/t) [ e^t/t - e^t/t² + 1/t² ]
\n" ); document.write( " * MX(t) = 3e^t/t - 6e^t/t² + 6e^t/t³ - 6/t³
\n" ); document.write( " * MX(t) = (3te^t - 6e^t + 6e^t/t - 6/t²)/t
\n" ); document.write( " * MX(t) = (3t^2e^t - 6te^t + 6e^t - 6)/t^3\r
\n" ); document.write( "\n" ); document.write( "2. **Find E(X) using MX(t):**\r
\n" ); document.write( "\n" ); document.write( " * E(X) = MX'(0)
\n" ); document.write( " * MX'(t) = d/dt [(3t²e^t - 6te^t + 6e^t - 6)/t^3]\r
\n" ); document.write( "\n" ); document.write( " We can use L'Hopital's rule or series expansions to find the limit.\r
\n" ); document.write( "\n" ); document.write( " * E(X) = lim(t→0) MX'(t)
\n" ); document.write( " * Using L'Hopital's rule three times, or the series expansion of e^t, we find:
\n" ); document.write( " * E(X) = lim(t→0) (3t^2e^t+6te^t+3e^t-6e^t-6te^t+6e^t)/3t^2
\n" ); document.write( " * E(X) = lim(t→0) (3t^2e^t+3e^t)/3t^2
\n" ); document.write( " * E(X) = lim(t→0) (3t^2e^t+6te^t+6e^t)/6t
\n" ); document.write( " * E(X) = lim(t→0) (3t^2e^t+12te^t+6e^t)/6
\n" ); document.write( " * E(X) = 6/8 = 3/4\r
\n" ); document.write( "\n" ); document.write( "**Answers**\r
\n" ); document.write( "\n" ); document.write( "* **(a) k = 3**
\n" ); document.write( "* **(b) E(X) = 3/4, Var(X) = 3/80**
\n" ); document.write( "* **(c) MX(t) = (3t²e^t - 6te^t + 6e^t - 6)/t^3, E(X) = 3/4**
\n" ); document.write( "
\n" ); document.write( "
\n" );