document.write( "Question 1177613: Suppose that Y is a continuous random variable whose pdf is given by
\n" );
document.write( "f (y) =
\n" );
document.write( "K(4y − 2y^2), 0 < y < 2
\n" );
document.write( "0, elsewhere.\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "(a) What is the value of K?
\n" );
document.write( "(b) Find P(Y > 1).
\n" );
document.write( "(c) Find F (y)\r
\n" );
document.write( "\n" );
document.write( "thank you \n" );
document.write( "
Algebra.Com's Answer #850434 by CPhill(1987) You can put this solution on YOUR website! Absolutely, let's break down the problem step by step.\r \n" ); document.write( "\n" ); document.write( "**(a) Finding the value of K**\r \n" ); document.write( "\n" ); document.write( "To find the value of K, we'll use the property that the integral of a probability density function (PDF) over its entire range must equal 1. \r \n" ); document.write( "\n" ); document.write( "Therefore, we need to solve the following equation for K:\r \n" ); document.write( "\n" ); document.write( "``` \n" ); document.write( "∫[0,2] K(4y - 2y^2) dy = 1 \n" ); document.write( "```\r \n" ); document.write( "\n" ); document.write( "Evaluating the integral:\r \n" ); document.write( "\n" ); document.write( "``` \n" ); document.write( "K [2y^2 - (2/3)y^3] from 0 to 2 = 1 \n" ); document.write( "K (8 - (16/3)) = 1 \n" ); document.write( "K (8/3) = 1 \n" ); document.write( "```\r \n" ); document.write( "\n" ); document.write( "Solving for K:\r \n" ); document.write( "\n" ); document.write( "``` \n" ); document.write( "K = 3/8 \n" ); document.write( "```\r \n" ); document.write( "\n" ); document.write( "**(b) Finding P(Y > 1)**\r \n" ); document.write( "\n" ); document.write( "To find P(Y > 1), we'll integrate the PDF from 1 to 2:\r \n" ); document.write( "\n" ); document.write( "``` \n" ); document.write( "P(Y > 1) = ∫[1,2] (3/8)(4y - 2y^2) dy \n" ); document.write( " = (3/8) [2y^2 - (2/3)y^3] from 1 to 2 \n" ); document.write( " = (3/8) [(8 - (16/3)) - (2 - (2/3))] \n" ); document.write( " = (3/8) (2/3) = 1/4 \n" ); document.write( "```\r \n" ); document.write( "\n" ); document.write( "Therefore, P(Y > 1) = 1/4.\r \n" ); document.write( "\n" ); document.write( "**(c) Finding F(y)**\r \n" ); document.write( "\n" ); document.write( "The cumulative distribution function (CDF), F(y), is the integral of the PDF from negative infinity to y. We can define it piecewise:\r \n" ); document.write( "\n" ); document.write( "For y ≤ 0: \n" ); document.write( "``` \n" ); document.write( "F(y) = 0 \n" ); document.write( "```\r \n" ); document.write( "\n" ); document.write( "For 0 < y < 2: \n" ); document.write( "``` \n" ); document.write( "F(y) = ∫[0,y] (3/8)(4t - 2t^2) dt \n" ); document.write( " = (3/8) [2t^2 - (2/3)t^3] from 0 to y \n" ); document.write( " = (3/8) (2y^2 - (2/3)y^3) \n" ); document.write( " = (3/4)y^2 - (1/4)y^3 \n" ); document.write( "```\r \n" ); document.write( "\n" ); document.write( "For y ≥ 2: \n" ); document.write( "``` \n" ); document.write( "F(y) = 1 \n" ); document.write( "```\r \n" ); document.write( "\n" ); document.write( "So, the complete CDF is:\r \n" ); document.write( "\n" ); document.write( "``` \n" ); document.write( "F(y) = \n" ); document.write( " 0, y ≤ 0 \n" ); document.write( " (3/4)y^2 - (1/4)y^3, 0 < y < 2 \n" ); document.write( " 1, y ≥ 2 \n" ); document.write( "``` \n" ); document.write( " |