document.write( "Question 1209787: If 5^x = 7^y = 1225
\n" );
document.write( "find xy/(x + y)
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #850431 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! Given that $5^x = 7^y = 1225$, we can use the following steps to find $\frac{xy}{x+y}$.\r \n" ); document.write( "\n" ); document.write( "1. Express 1225 as a product of its prime factors. \n" ); document.write( "2. Substitute the prime factorization of 1225 into the given equations. \n" ); document.write( "3. Express x and y in terms of the exponents of the prime factors. \n" ); document.write( "4. Substitute the expressions for x and y into the expression $\frac{xy}{x+y}$. \n" ); document.write( "5. Simplify the expression.\r \n" ); document.write( "\n" ); document.write( "Here are the detailed steps:\r \n" ); document.write( "\n" ); document.write( "1. Express 1225 as a product of its prime factors. \n" ); document.write( " \n" ); document.write( " $1225 = 5^2 \cdot 7^2$\r \n" ); document.write( "\n" ); document.write( "2. Substitute the prime factorization of 1225 into the given equations.\r \n" ); document.write( "\n" ); document.write( " $5^x = 5^2 \cdot 7^2$ \n" ); document.write( " $7^y = 5^2 \cdot 7^2$\r \n" ); document.write( "\n" ); document.write( "3. Express x and y in terms of the exponents of the prime factors.\r \n" ); document.write( "\n" ); document.write( " $x = 2 + 2 \log_5 7$ \n" ); document.write( " $y = 2 + 2 \log_7 5$\r \n" ); document.write( "\n" ); document.write( "4. Substitute the expressions for x and y into the expression $\frac{xy}{x+y}$.\r \n" ); document.write( "\n" ); document.write( " $\frac{xy}{x+y} = \frac{(2 + 2 \log_5 7)(2 + 2 \log_7 5)}{(2 + 2 \log_5 7) + (2 + 2 \log_7 5)}$\r \n" ); document.write( "\n" ); document.write( "5. Simplify the expression.\r \n" ); document.write( "\n" ); document.write( " $\frac{xy}{x+y} = \frac{4 + 4 \log_5 7 + 4 \log_7 5 + 4 \log_5 7 \log_7 5}{4 + 2 \log_5 7 + 2 \log_7 5}$ \n" ); document.write( " \n" ); document.write( " $\frac{xy}{x+y} = \frac{2 + 2 \log_5 7 + 2 \log_7 5 + 2 \log_5 7 \log_7 5}{2 + \log_5 7 + \log_7 5}$ \n" ); document.write( " \n" ); document.write( " $\frac{xy}{x+y} = \frac{2 (1 + \log_5 7 + \log_7 5 + \log_5 7 \log_7 5)}{2 + \log_5 7 + \log_7 5}$ \n" ); document.write( " \n" ); document.write( " $\frac{xy}{x+y} = \frac{2 (1 + \log_5 7)(1 + \log_7 5)}{2 + \log_5 7 + \log_7 5}$\r \n" ); document.write( "\n" ); document.write( " Since $\log_a b = \frac{1}{\log_b a}$, we have $\log_5 7 \log_7 5 = 1$. Therefore, \n" ); document.write( " \[\frac{xy}{x + y} = \frac{2 (1 + \log_5 7)(1 + \log_7 5)}{2 + \log_5 7 + \log_7 5} = \frac{2 (1 + \log_5 7 + \log_7 5 + 1)}{2 + \log_5 7 + \log_7 5} = \boxed{2}.\] \n" ); document.write( " |