document.write( "Question 1177710: A coin is tossed three times. Let Z denote the number of heads on the first toss and W the total number of heads on the 2 tosses. If the coin is unbalanced and a
\n" );
document.write( "head has a 40% chance of occurring, find the joint probability distribution of W and Z.
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #850402 by CPhill(1987) You can put this solution on YOUR website! Let's solve this problem step-by-step.\r \n" ); document.write( "\n" ); document.write( "**1. Define Random Variables**\r \n" ); document.write( "\n" ); document.write( "* **Z:** Number of heads on the first toss (Z can be 0 or 1) \n" ); document.write( "* **W:** Total number of heads in the last two tosses (W can be 0, 1, or 2)\r \n" ); document.write( "\n" ); document.write( "**2. Probabilities**\r \n" ); document.write( "\n" ); document.write( "* Probability of a head (H): P(H) = 0.4 \n" ); document.write( "* Probability of a tail (T): P(T) = 1 - 0.4 = 0.6\r \n" ); document.write( "\n" ); document.write( "**3. Possible Outcomes and Corresponding W and Z Values**\r \n" ); document.write( "\n" ); document.write( "Let's list all possible outcomes of three coin tosses and their corresponding W and Z values:\r \n" ); document.write( "\n" ); document.write( "| Outcome | Z (Heads on 1st Toss) | W (Heads on 2nd & 3rd Tosses) | Probability | \n" ); document.write( "|---|---|---|---| \n" ); document.write( "| TTT | 0 | 0 | (0.6)(0.6)(0.6) = 0.216 | \n" ); document.write( "| TTH | 0 | 1 | (0.6)(0.6)(0.4) = 0.144 | \n" ); document.write( "| THT | 0 | 1 | (0.6)(0.4)(0.6) = 0.144 | \n" ); document.write( "| THH | 0 | 2 | (0.6)(0.4)(0.4) = 0.096 | \n" ); document.write( "| HTT | 1 | 0 | (0.4)(0.6)(0.6) = 0.144 | \n" ); document.write( "| HTH | 1 | 1 | (0.4)(0.6)(0.4) = 0.096 | \n" ); document.write( "| HHT | 1 | 1 | (0.4)(0.4)(0.6) = 0.096 | \n" ); document.write( "| HHH | 1 | 2 | (0.4)(0.4)(0.4) = 0.064 |\r \n" ); document.write( "\n" ); document.write( "**4. Joint Probability Distribution**\r \n" ); document.write( "\n" ); document.write( "Now, we create the joint probability distribution table:\r \n" ); document.write( "\n" ); document.write( "| Z\W | 0 | 1 | 2 | \n" ); document.write( "|---|---|---|---| \n" ); document.write( "| 0 | 0.216 | 0.288 (0.144 + 0.144) | 0.096 | \n" ); document.write( "| 1 | 0.144 | 0.192 (0.096 + 0.096) | 0.064 |\r \n" ); document.write( "\n" ); document.write( "**Verification**\r \n" ); document.write( "\n" ); document.write( "Let's verify that the sum of all probabilities is 1:\r \n" ); document.write( "\n" ); document.write( "0.216 + 0.288 + 0.096 + 0.144 + 0.192 + 0.064 = 1.000\r \n" ); document.write( "\n" ); document.write( "**Therefore, the joint probability distribution of W and Z is:**\r \n" ); document.write( "\n" ); document.write( "| Z\W | 0 | 1 | 2 | \n" ); document.write( "|---|---|---|---| \n" ); document.write( "| 0 | 0.216 | 0.288 | 0.096 | \n" ); document.write( "| 1 | 0.144 | 0.192 | 0.064 | \n" ); document.write( " \n" ); document.write( " |