document.write( "Question 1177956: CNNBC recently reported that the mean annual cost of auto insurance is 1025 dollars. Assume the standard deviation is 252 dollars. You take a simple random sample of 57 auto insurance policies.\r
\n" ); document.write( "\n" ); document.write( "Find the probability that a single randomly selected value is less than 989 dollars.
\n" ); document.write( "P(X < 989) = \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Find the probability that a sample of size
\n" ); document.write( "n
\n" ); document.write( "=
\n" ); document.write( "57
\n" ); document.write( " is randomly selected with a mean less than 989 dollars.
\n" ); document.write( "P(M < 989) = \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Enter your answers as numbers accurate to 4 decimal places.
\n" ); document.write( "

Algebra.Com's Answer #850393 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
Let's solve this problem step-by-step.\r
\n" ); document.write( "\n" ); document.write( "**Given Information**\r
\n" ); document.write( "\n" ); document.write( "* Population Mean (μ): $1025
\n" ); document.write( "* Population Standard Deviation (σ): $252
\n" ); document.write( "* Sample Size (n): 57\r
\n" ); document.write( "\n" ); document.write( "**1. Probability for a Single Randomly Selected Value (X < 989)**\r
\n" ); document.write( "\n" ); document.write( "* We need to find P(X < 989) where X is a normally distributed random variable.\r
\n" ); document.write( "\n" ); document.write( "1. **Calculate the Z-score:**
\n" ); document.write( " * Z = (X - μ) / σ
\n" ); document.write( " * Z = (989 - 1025) / 252
\n" ); document.write( " * Z = -36 / 252 ≈ -0.1429\r
\n" ); document.write( "\n" ); document.write( "2. **Find the Probability using the Z-table or Calculator:**
\n" ); document.write( " * P(Z < -0.1429) ≈ 0.4431\r
\n" ); document.write( "\n" ); document.write( " Therefore, P(X < 989) ≈ 0.4431\r
\n" ); document.write( "\n" ); document.write( "**2. Probability for a Sample Mean (M < 989)**\r
\n" ); document.write( "\n" ); document.write( "* We need to find P(M < 989) where M is the sample mean.\r
\n" ); document.write( "\n" ); document.write( "1. **Calculate the Standard Error (SE):**
\n" ); document.write( " * SE = σ / √n
\n" ); document.write( " * SE = 252 / √57
\n" ); document.write( " * SE ≈ 252 / 7.5498 ≈ 33.377\r
\n" ); document.write( "\n" ); document.write( "2. **Calculate the Z-score for the Sample Mean:**
\n" ); document.write( " * Z = (M - μ) / SE
\n" ); document.write( " * Z = (989 - 1025) / 33.377
\n" ); document.write( " * Z = -36 / 33.377 ≈ -1.0786\r
\n" ); document.write( "\n" ); document.write( "3. **Find the Probability using the Z-table or Calculator:**
\n" ); document.write( " * P(Z < -1.0786) ≈ 0.1403\r
\n" ); document.write( "\n" ); document.write( " Therefore, P(M < 989) ≈ 0.1403\r
\n" ); document.write( "\n" ); document.write( "**Answers**\r
\n" ); document.write( "\n" ); document.write( "* P(X < 989) ≈ 0.4431
\n" ); document.write( "* P(M < 989) ≈ 0.1403
\n" ); document.write( "
\n" ); document.write( "
\n" );