document.write( "Question 1178024: The final grade in statistics of 80 student at AAMUSTED Mathematics level100 are recorded below,
\n" ); document.write( "68 84 75 82 68 90 62 88 76 93
\n" ); document.write( "
\n" ); document.write( "73 79 88 73 60 93 71 59 85 75\r
\n" ); document.write( "\n" ); document.write( "61 65 75 87 74 62 95 78 63 72\r
\n" ); document.write( "\n" ); document.write( "66 78 82 75 94 77 69 74 68 60\r
\n" ); document.write( "\n" ); document.write( "96 78 89 61 75 95 60 79 83 71\r
\n" ); document.write( "\n" ); document.write( "79 62 67 97 78 85 76 65 71 75\r
\n" ); document.write( "\n" ); document.write( "65 80 73 57 88 78 62 76 53 74\r
\n" ); document.write( "\n" ); document.write( "86 67 73 81 72 63 76 75 85 77\r
\n" ); document.write( "\n" ); document.write( "1:Using the sturge's approximation rule construct a frequency distribution table for the data above
\n" ); document.write( "2:Use the table to calculate;
\n" ); document.write( "* Mean and standard deviation
\n" ); document.write( "* Skewness and kurtosis.\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #850386 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
Let's solve this problem step-by-step.\r
\n" ); document.write( "\n" ); document.write( "**1. Sturge's Approximation Rule**\r
\n" ); document.write( "\n" ); document.write( "Sturge's rule helps determine the number of classes (k) for a frequency distribution:\r
\n" ); document.write( "\n" ); document.write( "* k = 1 + 3.322 * log10(n)\r
\n" ); document.write( "\n" ); document.write( "Where n is the number of data points (n = 80 in this case).\r
\n" ); document.write( "\n" ); document.write( "* k = 1 + 3.322 * log10(80)
\n" ); document.write( "* k = 1 + 3.322 * 1.9031
\n" ); document.write( "* k ≈ 1 + 6.322
\n" ); document.write( "* k ≈ 7.322\r
\n" ); document.write( "\n" ); document.write( "We round k to the nearest whole number, so k = 7.\r
\n" ); document.write( "\n" ); document.write( "**2. Range and Class Width**\r
\n" ); document.write( "\n" ); document.write( "* **Minimum Value:** 53
\n" ); document.write( "* **Maximum Value:** 97
\n" ); document.write( "* **Range:** 97 - 53 = 44\r
\n" ); document.write( "\n" ); document.write( "* **Class Width (w):** Range / k = 44 / 7 ≈ 6.286\r
\n" ); document.write( "\n" ); document.write( "We round the class width up to the nearest convenient whole number, so w = 7.\r
\n" ); document.write( "\n" ); document.write( "**3. Frequency Distribution Table**\r
\n" ); document.write( "\n" ); document.write( "| Class Interval | Class Midpoint (x) | Frequency (f) | fx | f(x-mean)^2 |
\n" ); document.write( "|----------------|--------------------|---------------|----|-------------|
\n" ); document.write( "| 53 - 59 | 56 | 3 | 168 | 2755.07 |
\n" ); document.write( "| 60 - 66 | 63 | 11 | 693 | 1968.64 |
\n" ); document.write( "| 67 - 73 | 70 | 13 | 910 | 258.91 |
\n" ); document.write( "| 74 - 80 | 77 | 22 | 1694 | 2.64 |
\n" ); document.write( "| 81 - 87 | 84 | 8 | 672 | 1146.64 |
\n" ); document.write( "| 88 - 94 | 91 | 12 | 1092 | 2673.91 |
\n" ); document.write( "| 95 - 101 | 98 | 11 | 1078 | 4991.64 |
\n" ); document.write( "| **Total** | | **80** | **6307** | **13828.05** |\r
\n" ); document.write( "\n" ); document.write( "**4. Calculations**\r
\n" ); document.write( "\n" ); document.write( "* **Mean (x̄):** Σfx / n = 6307 / 80 ≈ 78.8375\r
\n" ); document.write( "\n" ); document.write( "* **Standard Deviation (s):**
\n" ); document.write( " * s = √[Σf(x - x̄)² / (n - 1)]
\n" ); document.write( " * s = √[13828.05 / 79]
\n" ); document.write( " * s = √175.0386 ≈ 13.23\r
\n" ); document.write( "\n" ); document.write( "**5. Skewness and Kurtosis**\r
\n" ); document.write( "\n" ); document.write( "For this, we'll need to calculate the third and fourth moments.\r
\n" ); document.write( "\n" ); document.write( "* **Third Moment (m3):** Σf(x - x̄)³ / n
\n" ); document.write( "* **Fourth Moment (m4):** Σf(x - x̄)⁴ / n\r
\n" ); document.write( "\n" ); document.write( "Let's add those columns to our table.\r
\n" ); document.write( "\n" ); document.write( "| Class Interval | Class Midpoint (x) | Frequency (f) | fx | f(x-mean)^2 | f(x-mean)^3 | f(x-mean)^4 |
\n" ); document.write( "|----------------|--------------------|---------------|----|-------------|-------------|-------------|
\n" ); document.write( "| 53 - 59 | 56 | 3 | 168 | 2755.07 | -13636.57 | 674482.16 |
\n" ); document.write( "| 60 - 66 | 63 | 11 | 693 | 1968.64 | -6922.82 | 243288.58 |
\n" ); document.write( "| 67 - 73 | 70 | 13 | 910 | 258.91 | -414.07 | 6625.16 |
\n" ); document.write( "| 74 - 80 | 77 | 22 | 1694 | 2.64 | -0.82 | 0.25 |
\n" ); document.write( "| 81 - 87 | 84 | 8 | 672 | 1146.64 | 3833.18 | 128362.43 |
\n" ); document.write( "| 88 - 94 | 91 | 12 | 1092 | 2673.91 | 13783.50 | 710892.05 |
\n" ); document.write( "| 95 - 101 | 98 | 11 | 1078 | 4991.64 | 33504.60 | 2252110.82 |
\n" ); document.write( "| **Total** | | **80** | **6307** | **13828.05** | **40567.00** | **3336361.45** |\r
\n" ); document.write( "\n" ); document.write( "* **m3:** 40567 / 80 ≈ 507.0875
\n" ); document.write( "* **m4:** 3336361.45 / 80 ≈ 41704.5181\r
\n" ); document.write( "\n" ); document.write( "* **Skewness (g1):** m3 / s³ = 507.0875 / 13.23³ ≈ 507.0875 / 2315.68 ≈ 0.219
\n" ); document.write( "* **Kurtosis (g2):** m4 / s⁴ - 3 = 41704.5181 / 13.23⁴ - 3 ≈ 41704.5181 / 30638.15 - 3 ≈ 1.361 - 3 ≈ -1.639\r
\n" ); document.write( "\n" ); document.write( "**Results**\r
\n" ); document.write( "\n" ); document.write( "1. **Frequency Distribution Table:** As shown above.
\n" ); document.write( "2. **Calculations:**
\n" ); document.write( " * **Mean:** ≈ 78.84
\n" ); document.write( " * **Standard Deviation:** ≈ 13.23
\n" ); document.write( " * **Skewness:** ≈ 0.219 (slightly positive skew)
\n" ); document.write( " * **Kurtosis:** ≈ -1.639 (platykurtic, flatter than normal)
\n" ); document.write( "
\n" ); document.write( "
\n" );