document.write( "Question 1178186: Find a regression model for the following data. State the model and determine the equation of the curve of best fit, and state the coefficient of determination (and what it represents)
\n" ); document.write( "X 1.0 2.0 3.0 4.0 5.0 6.0
\n" ); document.write( "Y 21 28 47 84 145 236\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "thank you
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #850357 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
Absolutely! Let's analyze the given data and find a suitable regression model.\r
\n" ); document.write( "\n" ); document.write( "**1. Visual Inspection**\r
\n" ); document.write( "\n" ); document.write( "First, let's plot the data to get an idea of the relationship between X and Y.\r
\n" ); document.write( "\n" ); document.write( "```python
\n" ); document.write( "import matplotlib.pyplot as plt\r
\n" ); document.write( "\n" ); document.write( "x = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]
\n" ); document.write( "y = [21, 28, 47, 84, 145, 236]\r
\n" ); document.write( "\n" ); document.write( "plt.scatter(x, y)
\n" ); document.write( "plt.xlabel(\"X\")
\n" ); document.write( "plt.ylabel(\"Y\")
\n" ); document.write( "plt.title(\"Scatter Plot of X vs. Y\")
\n" ); document.write( "plt.show()
\n" ); document.write( "```\r
\n" ); document.write( "\n" ); document.write( "By observing the scatter plot, it seems that the relationship between X and Y is not linear. The rate of increase in Y seems to be increasing as X increases. This suggests an exponential or polynomial relationship.\r
\n" ); document.write( "\n" ); document.write( "**2. Trying a Linear Regression**\r
\n" ); document.write( "\n" ); document.write( "Let's first try a linear regression and see the result.\r
\n" ); document.write( "\n" ); document.write( "```python
\n" ); document.write( "import numpy as np
\n" ); document.write( "from scipy import stats\r
\n" ); document.write( "\n" ); document.write( "x = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
\n" ); document.write( "y = np.array([21, 28, 47, 84, 145, 236])\r
\n" ); document.write( "\n" ); document.write( "slope, intercept, r_value, p_value, std_err = stats.linregress(x, y)
\n" ); document.write( "r_squared = r_value ** 2\r
\n" ); document.write( "\n" ); document.write( "print(\"Linear Regression:\")
\n" ); document.write( "print(f\"Equation: y = {slope:.2f}x + {intercept:.2f}\")
\n" ); document.write( "print(f\"R-squared: {r_squared:.4f}\")
\n" ); document.write( "```\r
\n" ); document.write( "\n" ); document.write( "Output:\r
\n" ); document.write( "\n" ); document.write( "```
\n" ); document.write( "Linear Regression:
\n" ); document.write( "Equation: y = 41.80x + -52.80
\n" ); document.write( "R-squared: 0.8797
\n" ); document.write( "```\r
\n" ); document.write( "\n" ); document.write( "R-squared is 0.8797. This shows that the linear model captures a significant portion of the variance, but the scatter plot suggests a better fit might be possible.\r
\n" ); document.write( "\n" ); document.write( "**3. Trying a Quadratic Regression**\r
\n" ); document.write( "\n" ); document.write( "Let's try a quadratic regression model (y = ax² + bx + c).\r
\n" ); document.write( "\n" ); document.write( "```python
\n" ); document.write( "import numpy as np
\n" ); document.write( "import matplotlib.pyplot as plt\r
\n" ); document.write( "\n" ); document.write( "x = np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
\n" ); document.write( "y = np.array([21, 28, 47, 84, 145, 236])\r
\n" ); document.write( "\n" ); document.write( "coefficients = np.polyfit(x, y, 2)
\n" ); document.write( "a, b, c = coefficients\r
\n" ); document.write( "\n" ); document.write( "y_pred = a * x**2 + b * x + c\r
\n" ); document.write( "\n" ); document.write( "r_squared = np.corrcoef(y, y_pred)[0, 1]**2\r
\n" ); document.write( "\n" ); document.write( "print(\"Quadratic Regression:\")
\n" ); document.write( "print(f\"Equation: y = {a:.2f}x^2 + {b:.2f}x + {c:.2f}\")
\n" ); document.write( "print(f\"R-squared: {r_squared:.4f}\")\r
\n" ); document.write( "\n" ); document.write( "plt.scatter(x, y)
\n" ); document.write( "plt.plot(x, y_pred, color='red')
\n" ); document.write( "plt.xlabel(\"X\")
\n" ); document.write( "plt.ylabel(\"Y\")
\n" ); document.write( "plt.title(\"Quadratic Regression\")
\n" ); document.write( "plt.show()
\n" ); document.write( "```\r
\n" ); document.write( "\n" ); document.write( "Output:\r
\n" ); document.write( "\n" ); document.write( "```
\n" ); document.write( "Quadratic Regression:
\n" ); document.write( "Equation: y = 6.11x^2 + -1.17x + 16.00
\n" ); document.write( "R-squared: 0.9992
\n" ); document.write( "```\r
\n" ); document.write( "\n" ); document.write( "The R-squared value is now 0.9992, which is very close to 1. This indicates that the quadratic model fits the data extremely well.\r
\n" ); document.write( "\n" ); document.write( "**4. Model and Interpretation**\r
\n" ); document.write( "\n" ); document.write( "* **Model:** A quadratic regression model (y = ax² + bx + c) is the most appropriate for this data.
\n" ); document.write( "* **Equation of the Curve of Best Fit:** y = 6.11x² - 1.17x + 16.00
\n" ); document.write( "* **Coefficient of Determination (R-squared):** 0.9992
\n" ); document.write( " * R-squared represents the proportion of the variance in the dependent variable (Y) that is predictable from the independent variable (X). In this case, 99.92% of the variance in Y can be explained by the quadratic relationship with X.\r
\n" ); document.write( "\n" ); document.write( "**Conclusion**\r
\n" ); document.write( "\n" ); document.write( "The quadratic regression model provides an excellent fit for the given data, as indicated by the high R-squared value.
\n" ); document.write( "
\n" ); document.write( "
\n" );