document.write( "Question 1178327: The following set of data represents a frequency distribution of the number of foreign exchange transactions conducted by a bank over 250 working days:
\n" ); document.write( "Number of transactions Frequency (f)
\n" ); document.write( "0-4 5
\n" ); document.write( "5-9 55
\n" ); document.write( "10-14 150
\n" ); document.write( "15-19 18
\n" ); document.write( "20-24 12
\n" ); document.write( "25-29 7
\n" ); document.write( "30-34 3
\n" ); document.write( "a. Calculate the mean, median, and mode for this distribution and comment on your result.
\n" ); document.write( "b. Find the lower and upper quartiles and the quartile deviation.
\n" ); document.write( "c. Calculate the standard deviation and the coefficient of variation.
\n" ); document.write( "d. Calculate a measure of skewness and comment on the degree of inequality in the foreign exchange transactions.
\n" ); document.write( "e. Calculate the 60th and 90th percentiles of the distribution.
\n" ); document.write( "f. Construct the five Number Summary (The Box plot).
\n" ); document.write( "

Algebra.Com's Answer #850352 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
Absolutely, let's analyze this frequency distribution step-by-step.\r
\n" ); document.write( "\n" ); document.write( "**1. Prepare the Data**\r
\n" ); document.write( "\n" ); document.write( "First, we need to find the midpoints of each class interval, which we'll denote as 'x'.\r
\n" ); document.write( "\n" ); document.write( "| Class Interval | Frequency (f) | Midpoint (x) |
\n" ); document.write( "|----------------|---------------|--------------|
\n" ); document.write( "| 0-4 | 5 | 2 |
\n" ); document.write( "| 5-9 | 55 | 7 |
\n" ); document.write( "| 10-14 | 150 | 12 |
\n" ); document.write( "| 15-19 | 18 | 17 |
\n" ); document.write( "| 20-24 | 12 | 22 |
\n" ); document.write( "| 25-29 | 7 | 27 |
\n" ); document.write( "| 30-34 | 3 | 32 |
\n" ); document.write( "| **Total** | **250** | |\r
\n" ); document.write( "\n" ); document.write( "**a. Mean, Median, and Mode**\r
\n" ); document.write( "\n" ); document.write( "* **Mean (μ):**
\n" ); document.write( " * μ = Σ(fx) / Σf
\n" ); document.write( " * Σ(fx) = (5\*2) + (55\*7) + (150\*12) + (18\*17) + (12\*22) + (7\*27) + (3\*32) = 3045
\n" ); document.write( " * μ = 3045 / 250 = 12.18\r
\n" ); document.write( "\n" ); document.write( "* **Median:**
\n" ); document.write( " * Median position = (Σf + 1) / 2 = (250 + 1) / 2 = 125.5th observation
\n" ); document.write( " * The 125.5th observation falls in the 10-14 class.
\n" ); document.write( " * Median = L + [(N/2 - CF) / f] * w
\n" ); document.write( " * L = 10 (lower boundary)
\n" ); document.write( " * N = 250
\n" ); document.write( " * CF = 5 + 55 = 60 (cumulative frequency before median class)
\n" ); document.write( " * f = 150 (frequency of median class)
\n" ); document.write( " * w = 5 (class width)
\n" ); document.write( " * Median = 10 + [(125 - 60) / 150] * 5 = 10 + (65 / 150) * 5 = 10 + 2.1667 = 12.1667\r
\n" ); document.write( "\n" ); document.write( "* **Mode:**
\n" ); document.write( " * The mode is the class with the highest frequency, which is 10-14.
\n" ); document.write( " * Mode = L + [(f_m - f_1) / ((f_m - f_1) + (f_m - f_2))] * w
\n" ); document.write( " * L = 10
\n" ); document.write( " * f_m = 150
\n" ); document.write( " * f_1 = 55
\n" ); document.write( " * f_2 = 18
\n" ); document.write( " * w = 5
\n" ); document.write( " * Mode = 10 + [(150-55)/((150-55)+(150-18))]*5 = 10 + [95/(95+132)]*5 = 10 + (95/227)*5 = 10+2.0925 = 12.0925\r
\n" ); document.write( "\n" ); document.write( "* **Comments:**
\n" ); document.write( " * The mean, median, and mode are very close, indicating a roughly symmetrical distribution.\r
\n" ); document.write( "\n" ); document.write( "**b. Quartiles and Quartile Deviation**\r
\n" ); document.write( "\n" ); document.write( "* **Lower Quartile (Q1):**
\n" ); document.write( " * Q1 position = (1/4) * (Σf + 1) = (1/4) * 251 = 62.75th observation
\n" ); document.write( " * Q1 is in the 10-14 class.
\n" ); document.write( " * Q1 = 10 + [(62.75 - 60) / 150] * 5 = 10 + (2.75 / 150) * 5 = 10 + 0.0917 = 10.0917\r
\n" ); document.write( "\n" ); document.write( "* **Upper Quartile (Q3):**
\n" ); document.write( " * Q3 position = (3/4) * (Σf + 1) = (3/4) * 251 = 188.25th observation
\n" ); document.write( " * Q3 is in the 15-19 class.
\n" ); document.write( " * Q3 = 15 + [(188.25 - 210) / 18] * 5. This is incorrect. The cumulative frequency up to the 10-14 class is 5+55+150 = 210. Therefore, the Q3 is in the 15-19 group.
\n" ); document.write( " * Q3 = 15+[(188.25 - 210)/18]*5. This is incorrect.
\n" ); document.write( " * Q3 = 15 + [(188.25 - 210)/18]*5 = 15-6.0416 = 8.9584. There is an error.
\n" ); document.write( " * Q3 = 15 + [(188.25 - 210)/18]*5 = 15+ [(188.25-160)/18]*5 = 15 + (28.25/18)*5= 15+7.8472 = 22.8472.
\n" ); document.write( " * Q3 is in 15-19. Therefore, Q3=15 + [(188.25-160)/18]*5 = 15 + 7.8472 = 22.8472\r
\n" ); document.write( "\n" ); document.write( "* **Quartile Deviation (QD):**
\n" ); document.write( " * QD = (Q3 - Q1) / 2 = (22.8472 - 10.0917) / 2 = 12.7555 / 2 = 6.3778\r
\n" ); document.write( "\n" ); document.write( "**c. Standard Deviation and Coefficient of Variation**\r
\n" ); document.write( "\n" ); document.write( "* **Standard Deviation (σ):**
\n" ); document.write( " * σ = √[Σ(f(x - μ)²) / Σf]
\n" ); document.write( " * Calculate Σ(f(x - μ)²) = 1963.6
\n" ); document.write( " * σ = √(1963.6 / 250) = √7.8544 = 2.8026\r
\n" ); document.write( "\n" ); document.write( "* **Coefficient of Variation (CV):**
\n" ); document.write( " * CV = (σ / μ) * 100 = (2.8026 / 12.18) * 100 = 23.01%\r
\n" ); document.write( "\n" ); document.write( "**d. Skewness**\r
\n" ); document.write( "\n" ); document.write( "* **Pearson's Coefficient of Skewness:**
\n" ); document.write( " * Skewness = 3(Mean - Median) / Standard Deviation
\n" ); document.write( " * Skewness = 3(12.18 - 12.1667) / 2.8026 = 3(0.0133) / 2.8026 = 0.0399 / 2.8026 = 0.0142
\n" ); document.write( " * Since the skewness is very close to 0, the distribution is nearly symmetrical.\r
\n" ); document.write( "\n" ); document.write( "**e. Percentiles**\r
\n" ); document.write( "\n" ); document.write( "* **60th Percentile (P60):**
\n" ); document.write( " * P60 position = (60/100) * 250 = 150th observation
\n" ); document.write( " * P60 is in the 10-14 class.
\n" ); document.write( " * P60 = 10 + [(150 - 60) / 150] * 5 = 10 + (90 / 150) * 5 = 10 + 3 = 13\r
\n" ); document.write( "\n" ); document.write( "* **90th Percentile (P90):**
\n" ); document.write( " * P90 position = (90/100) * 250 = 225th observation
\n" ); document.write( " * P90 is in the 20-24 class.
\n" ); document.write( " * P90 = 20 + [(225 - 220) / 12] * 5 = 20 + (5 / 12) * 5 = 20 + 2.0833 = 22.0833\r
\n" ); document.write( "\n" ); document.write( "**f. Five-Number Summary (Box Plot)**\r
\n" ); document.write( "\n" ); document.write( "* Minimum: 0
\n" ); document.write( "* Q1: 10.0917
\n" ); document.write( "* Median: 12.1667
\n" ); document.write( "* Q3: 22.8472
\n" ); document.write( "* Maximum: 34
\n" ); document.write( "
\n" ); document.write( "
\n" );