document.write( "Question 1178345: The rate of change of atmospheric pressure P with respect to altitude h is proportional to P, provided that the temperature is constant. At a specific temperature, the pressure is 103.5 kPa at sea level and 89 kPa at h = 1,000 m. (Round your answers to one decimal place.)
\n" );
document.write( "(a) What is the pressure at an altitude of 3500 m?
\n" );
document.write( " kPa\r
\n" );
document.write( "\n" );
document.write( "(b) What is the pressure at the top of a mountain that is 6251 m high? \n" );
document.write( "
Algebra.Com's Answer #850351 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! Let's solve this problem step-by-step.\r \n" ); document.write( "\n" ); document.write( "**1. Set up the Differential Equation**\r \n" ); document.write( "\n" ); document.write( "The problem states that the rate of change of pressure (P) with respect to altitude (h) is proportional to P. This can be written as:\r \n" ); document.write( "\n" ); document.write( "* dP/dh = kP\r \n" ); document.write( "\n" ); document.write( "where k is the proportionality constant.\r \n" ); document.write( "\n" ); document.write( "**2. Solve the Differential Equation**\r \n" ); document.write( "\n" ); document.write( "This is a separable differential equation. We can solve it as follows:\r \n" ); document.write( "\n" ); document.write( "* dP/P = k dh \n" ); document.write( "* ∫(dP/P) = ∫(k dh) \n" ); document.write( "* ln|P| = kh + C \n" ); document.write( "* P = Ae^(kh)\r \n" ); document.write( "\n" ); document.write( "where A = e^C.\r \n" ); document.write( "\n" ); document.write( "**3. Use the Given Information to Find A and k**\r \n" ); document.write( "\n" ); document.write( "We are given:\r \n" ); document.write( "\n" ); document.write( "* P = 103.5 kPa at h = 0 m (sea level) \n" ); document.write( "* P = 89 kPa at h = 1000 m\r \n" ); document.write( "\n" ); document.write( "Using the first condition:\r \n" ); document.write( "\n" ); document.write( "* 103.5 = Ae^(k * 0) \n" ); document.write( "* A = 103.5\r \n" ); document.write( "\n" ); document.write( "So, the equation becomes:\r \n" ); document.write( "\n" ); document.write( "* P = 103.5e^(kh)\r \n" ); document.write( "\n" ); document.write( "Using the second condition:\r \n" ); document.write( "\n" ); document.write( "* 89 = 103.5e^(1000k) \n" ); document.write( "* 89 / 103.5 = e^(1000k) \n" ); document.write( "* ln(89 / 103.5) = 1000k \n" ); document.write( "* k = ln(89 / 103.5) / 1000 \n" ); document.write( "* k ≈ -0.0001484\r \n" ); document.write( "\n" ); document.write( "Therefore, the equation is:\r \n" ); document.write( "\n" ); document.write( "* P = 103.5e^(-0.0001484h)\r \n" ); document.write( "\n" ); document.write( "**4. Calculate the Pressure at 3500 m**\r \n" ); document.write( "\n" ); document.write( "* P = 103.5e^(-0.0001484 * 3500) \n" ); document.write( "* P ≈ 103.5e^(-0.5194) \n" ); document.write( "* P ≈ 103.5 * 0.5947 \n" ); document.write( "* P ≈ 61.55 kPa\r \n" ); document.write( "\n" ); document.write( "Rounded to one decimal place:\r \n" ); document.write( "\n" ); document.write( "* P ≈ 61.6 kPa\r \n" ); document.write( "\n" ); document.write( "**5. Calculate the Pressure at 6251 m**\r \n" ); document.write( "\n" ); document.write( "* P = 103.5e^(-0.0001484 * 6251) \n" ); document.write( "* P ≈ 103.5e^(-0.9276) \n" ); document.write( "* P ≈ 103.5 * 0.3954 \n" ); document.write( "* P ≈ 40.92 kPa\r \n" ); document.write( "\n" ); document.write( "Rounded to one decimal place:\r \n" ); document.write( "\n" ); document.write( "* P ≈ 40.9 kPa\r \n" ); document.write( "\n" ); document.write( "**Answers**\r \n" ); document.write( "\n" ); document.write( "(a) The pressure at an altitude of 3500 m is approximately **61.6 kPa**.\r \n" ); document.write( "\n" ); document.write( "(b) The pressure at the top of a mountain that is 6251 m high is approximately **40.9 kPa**. \n" ); document.write( " \n" ); document.write( " |