document.write( "Question 1178404: in a laboratory, a chemist's measuring glass is conical in shape. if it is 8cm deep and 3 cm across the mouth, find the distance on the slant edge between the markings for 1 cc and 2 cc. \n" ); document.write( "
Algebra.Com's Answer #850349 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
Let's break down this problem step-by-step.\r
\n" ); document.write( "\n" ); document.write( "**1. Visualize the Cone**\r
\n" ); document.write( "\n" ); document.write( "Imagine a cone representing the measuring glass.\r
\n" ); document.write( "\n" ); document.write( "* **Height (h):** 8 cm
\n" ); document.write( "* **Diameter (d):** 3 cm
\n" ); document.write( "* **Radius (r):** d/2 = 3/2 = 1.5 cm\r
\n" ); document.write( "\n" ); document.write( "**2. Volume of a Cone**\r
\n" ); document.write( "\n" ); document.write( "The volume (V) of a cone is given by:\r
\n" ); document.write( "\n" ); document.write( "* V = (1/3)πr²h\r
\n" ); document.write( "\n" ); document.write( "**3. Similar Cones**\r
\n" ); document.write( "\n" ); document.write( "When we fill the cone to different levels, we create smaller cones that are similar to the larger cone. This means their dimensions are proportional.\r
\n" ); document.write( "\n" ); document.write( "**4. Finding the Radii and Heights for 1 cc and 2 cc**\r
\n" ); document.write( "\n" ); document.write( "Let's denote:\r
\n" ); document.write( "\n" ); document.write( "* r1, h1: radius and height for 1 cc
\n" ); document.write( "* r2, h2: radius and height for 2 cc\r
\n" ); document.write( "\n" ); document.write( "We know:\r
\n" ); document.write( "\n" ); document.write( "* 1 = (1/3)πr1²h1
\n" ); document.write( "* 2 = (1/3)πr2²h2\r
\n" ); document.write( "\n" ); document.write( "Also, by similarity:\r
\n" ); document.write( "\n" ); document.write( "* r1/h1 = r/h = 1.5/8
\n" ); document.write( "* r2/h2 = r/h = 1.5/8\r
\n" ); document.write( "\n" ); document.write( "From these proportions, we have:\r
\n" ); document.write( "\n" ); document.write( "* r1 = (1.5/8)h1
\n" ); document.write( "* r2 = (1.5/8)h2\r
\n" ); document.write( "\n" ); document.write( "Substitute these into the volume equations:\r
\n" ); document.write( "\n" ); document.write( "* 1 = (1/3)π((1.5/8)h1)²h1 = (1/3)π(2.25/64)h1³
\n" ); document.write( "* 2 = (1/3)π((1.5/8)h2)²h2 = (1/3)π(2.25/64)h2³\r
\n" ); document.write( "\n" ); document.write( "Solve for h1 and h2:\r
\n" ); document.write( "\n" ); document.write( "* h1³ = (64 * 3) / (2.25π) ≈ 27.147
\n" ); document.write( "* h1 ≈ ∛27.147 ≈ 3.003 cm
\n" ); document.write( "* h2³ = (64 * 6) / (2.25π) ≈ 54.294
\n" ); document.write( "* h2 ≈ ∛54.294 ≈ 3.784 cm\r
\n" ); document.write( "\n" ); document.write( "Now find r1 and r2:\r
\n" ); document.write( "\n" ); document.write( "* r1 = (1.5/8) * 3.003 ≈ 0.563 cm
\n" ); document.write( "* r2 = (1.5/8) * 3.784 ≈ 0.710 cm\r
\n" ); document.write( "\n" ); document.write( "**5. Finding the Slant Edge Distances**\r
\n" ); document.write( "\n" ); document.write( "Let:\r
\n" ); document.write( "\n" ); document.write( "* s1: slant edge distance for 1 cc
\n" ); document.write( "* s2: slant edge distance for 2 cc\r
\n" ); document.write( "\n" ); document.write( "Using the Pythagorean theorem (in 3D):\r
\n" ); document.write( "\n" ); document.write( "* s1 = √(r1² + h1²) = √(0.563² + 3.003²) ≈ √(0.317 + 9.018) ≈ √9.335 ≈ 3.055 cm
\n" ); document.write( "* s2 = √(r2² + h2²) = √(0.710² + 3.784²) ≈ √(0.504 + 14.319) ≈ √14.823 ≈ 3.850 cm\r
\n" ); document.write( "\n" ); document.write( "**6. Finding the Distance Between Markings**\r
\n" ); document.write( "\n" ); document.write( "The distance on the slant edge between the 1 cc and 2 cc markings is:\r
\n" ); document.write( "\n" ); document.write( "* s2 - s1 ≈ 3.850 - 3.055 ≈ 0.795 cm\r
\n" ); document.write( "\n" ); document.write( "**Therefore, the distance on the slant edge between the markings for 1 cc and 2 cc is approximately 0.795 cm.**
\n" ); document.write( "
\n" ); document.write( "
\n" );