document.write( "Question 1178892: What is the correct way to write the following function:
\n" ); document.write( "K(x, xi) = Square of alpha multiplied with exp power minus of summation of k of (x - xi)² if we have following condition:
\n" ); document.write( "..
\n" ); document.write( "Vectors x1, x2, x3, ... , xn belongs to d dimensional Real space (R with superscript d) and d is from 1 to D dimensional.
\n" ); document.write( "

Algebra.Com's Answer #850285 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
Let's break down how to write this function in a clear and standard mathematical notation, along with explanations.\r
\n" ); document.write( "\n" ); document.write( "**Understanding the Components:**\r
\n" ); document.write( "\n" ); document.write( "* **K(x, xi):** This indicates that the function K takes two inputs:
\n" ); document.write( " * `x`: A vector in d-dimensional real space (ℝᵈ).
\n" ); document.write( " * `xi`: Another vector in d-dimensional real space (ℝᵈ).
\n" ); document.write( "* **α²:** \"Square of alpha\" means α raised to the power of 2 (α²).
\n" ); document.write( "* **exp(...):** This represents the exponential function (e raised to the power of...).
\n" ); document.write( "* **∑k (...):** This is a summation over an index k. We need to clarify what k is summing over.
\n" ); document.write( "* **(x - xi)²:** This represents the squared Euclidean distance between vectors x and xi.\r
\n" ); document.write( "\n" ); document.write( "**Clarifying the Summation:**\r
\n" ); document.write( "\n" ); document.write( "Since x and xi are d-dimensional vectors, the summation is likely over the components of these vectors. So, if:\r
\n" ); document.write( "\n" ); document.write( "* x = (x₁, x₂, ..., xᵈ)
\n" ); document.write( "* xi = (xi₁, xi₂, ..., xiᵈ)\r
\n" ); document.write( "\n" ); document.write( "Then:\r
\n" ); document.write( "\n" ); document.write( "* (x - xi)² = ∑(k=1 to d) (xk - xik)²\r
\n" ); document.write( "\n" ); document.write( "**Putting it All Together:**\r
\n" ); document.write( "\n" ); document.write( "The function K(x, xi) can be written as:\r
\n" ); document.write( "\n" ); document.write( "**K(x, xi) = α² * exp(-∑(k=1 to d) (xk - xik)²)**\r
\n" ); document.write( "\n" ); document.write( "**More Detailed Notation:**\r
\n" ); document.write( "\n" ); document.write( "If you want to be even more explicit, you can write:\r
\n" ); document.write( "\n" ); document.write( "**K(x, xi) = α² * exp(-∑(k=1)ᵈ (x<0xE2><0x82><0x96> - xi<0xE2><0x82><0x96>)²)**\r
\n" ); document.write( "\n" ); document.write( "Where:\r
\n" ); document.write( "\n" ); document.write( "* x<0xE2><0x82><0x96> represents the k-th component of vector x.
\n" ); document.write( "* xi<0xE2><0x82><0x96> represents the k-th component of vector xi.\r
\n" ); document.write( "\n" ); document.write( "**Python Example (for clarity):**\r
\n" ); document.write( "\n" ); document.write( "```python
\n" ); document.write( "import numpy as np\r
\n" ); document.write( "\n" ); document.write( "def K(x, xi, alpha):
\n" ); document.write( " \"\"\"
\n" ); document.write( " Calculates the function K(x, xi).\r
\n" ); document.write( "\n" ); document.write( " Args:
\n" ); document.write( " x: A numpy array representing vector x.
\n" ); document.write( " xi: A numpy array representing vector xi.
\n" ); document.write( " alpha: A scalar value.\r
\n" ); document.write( "\n" ); document.write( " Returns:
\n" ); document.write( " The value of K(x, xi).
\n" ); document.write( " \"\"\"
\n" ); document.write( " diff = x - xi
\n" ); document.write( " squared_distance = np.sum(diff**2)
\n" ); document.write( " return alpha**2 * np.exp(-squared_distance)\r
\n" ); document.write( "\n" ); document.write( "# Example usage:
\n" ); document.write( "x = np.array([1, 2, 3])
\n" ); document.write( "xi = np.array([4, 5, 6])
\n" ); document.write( "alpha = 2.0\r
\n" ); document.write( "\n" ); document.write( "result = K(x, xi, alpha)
\n" ); document.write( "print(result)
\n" ); document.write( "```\r
\n" ); document.write( "\n" ); document.write( "**Key Points:**\r
\n" ); document.write( "\n" ); document.write( "* The summation is crucial. It's summing the squared differences of the corresponding components of the vectors.
\n" ); document.write( "* The exponential function applies to the negative of the squared Euclidean distance.
\n" ); document.write( "* Alpha is a scaling factor.
\n" ); document.write( "* The function is a radial basis function (RBF) kernel, and is used in machine learning.
\n" ); document.write( "
\n" ); document.write( "
\n" );