document.write( "Question 1179249: Find value of the folllwing:
\n" );
document.write( "(a) (a. b) + (a x b)²
\n" );
document.write( "(b) (a. b) + (a x 2b)²
\n" );
document.write( ".
\n" );
document.write( "Note: Here . means dot product and x means cross or vector product. \n" );
document.write( "
Algebra.Com's Answer #850251 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! Let's solve these vector operations:\r \n" ); document.write( "\n" ); document.write( "**(a) (a · b) + |a × b|²**\r \n" ); document.write( "\n" ); document.write( "* **Dot Product (a · b):** \n" ); document.write( " * a · b = |a||b|cos(θ), where θ is the angle between vectors a and b. \n" ); document.write( "* **Cross Product (a × b):** \n" ); document.write( " * |a × b| = |a||b|sin(θ) \n" ); document.write( " * |a × b|² = |a|²|b|²sin²(θ)\r \n" ); document.write( "\n" ); document.write( "Now, let's substitute these into the given expression:\r \n" ); document.write( "\n" ); document.write( "(a · b) + |a × b|² = |a||b|cos(θ) + |a|²|b|²sin²(θ)\r \n" ); document.write( "\n" ); document.write( "However, we can simplify this further using a trigonometric identity: sin²(θ) + cos²(θ) = 1.\r \n" ); document.write( "\n" ); document.write( "* |a · b|² = |a|²|b|²cos²(θ)\r \n" ); document.write( "\n" ); document.write( "Therefore,\r \n" ); document.write( "\n" ); document.write( "(a · b)² + |a × b|² = |a|²|b|²cos²(θ) + |a|²|b|²sin²(θ) \n" ); document.write( "= |a|²|b|²(cos²(θ) + sin²(θ)) \n" ); document.write( "= |a|²|b|²(1) \n" ); document.write( "= |a|²|b|²\r \n" ); document.write( "\n" ); document.write( "So, the original expression is not (a.b)^2 + |axb|^2 , but (a.b) + |axb|^2. \n" ); document.write( "Thus,\r \n" ); document.write( "\n" ); document.write( "(a · b) + |a × b|² = |a||b|cos(θ) + |a|²|b|²sin²(θ)\r \n" ); document.write( "\n" ); document.write( "This cannot be further simplified without knowing the vectors a and b.\r \n" ); document.write( "\n" ); document.write( "**(b) (a · b) + |a × 2b|²**\r \n" ); document.write( "\n" ); document.write( "* **Dot Product (a · b):** \n" ); document.write( " * a · b = |a||b|cos(θ) \n" ); document.write( "* **Cross Product (a × 2b):** \n" ); document.write( " * a × 2b = 2(a × b) \n" ); document.write( " * |a × 2b| = 2|a × b| = 2|a||b|sin(θ) \n" ); document.write( " * |a × 2b|² = 4|a|²|b|²sin²(θ)\r \n" ); document.write( "\n" ); document.write( "Now, substitute these into the given expression:\r \n" ); document.write( "\n" ); document.write( "(a · b) + |a × 2b|² = |a||b|cos(θ) + 4|a|²|b|²sin²(θ)\r \n" ); document.write( "\n" ); document.write( "Again, this expression cannot be further simplified without knowing the vectors a and b.\r \n" ); document.write( "\n" ); document.write( "**Summary:**\r \n" ); document.write( "\n" ); document.write( "* (a · b) + |a × b|² = |a||b|cos(θ) + |a|²|b|²sin²(θ) \n" ); document.write( "* (a · b) + |a × 2b|² = |a||b|cos(θ) + 4|a|²|b|²sin²(θ)\r \n" ); document.write( "\n" ); document.write( "If the question had been (a.b)^2 + |axb|^2 , then the answer would be |a|^2|b|^2. \n" ); document.write( " \n" ); document.write( " |