document.write( "Question 1179489: The height in centimeters of a certain plant is normally distributed. A random sample
\n" );
document.write( "of the plant is measured and the results are as follows:\r
\n" );
document.write( "\n" );
document.write( "14.6;12.5;15.3; 16.1; 14.4; 12.9; 13.7; 14.9
\n" );
document.write( "a. Find a point estimate for the mean height of this plant.
\n" );
document.write( "b. Construct a 90% confidence interval for the true mean height of this particular
\n" );
document.write( "plant. \n" );
document.write( "
Algebra.Com's Answer #850227 by CPhill(1987)![]() ![]() You can put this solution on YOUR website! **a) Point Estimate for the Mean Height**\r \n" ); document.write( "\n" ); document.write( "The sample mean (x̄) is a good point estimate for the population mean (μ). \r \n" ); document.write( "\n" ); document.write( "To calculate the sample mean, add up all the heights and divide by the number of plants in the sample:\r \n" ); document.write( "\n" ); document.write( "x̄ = (14.6 + 12.5 + 15.3 + 16.1 + 14.4 + 12.9 + 13.7 + 14.9) / 8 \n" ); document.write( "x̄ = 114.4 / 8 \n" ); document.write( "**x̄ = 14.3 cm**\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "**b) 90% Confidence Interval for the True Mean Height**\r \n" ); document.write( "\n" ); document.write( "Since the population standard deviation is unknown, we'll use a t-distribution to construct the confidence interval.\r \n" ); document.write( "\n" ); document.write( "**1. Calculate the Sample Standard Deviation (s)**\r \n" ); document.write( "\n" ); document.write( "s = √[ Σ(xi - x̄)² / (n - 1) ] \r \n" ); document.write( "\n" ); document.write( "where: \n" ); document.write( " * xi = each individual height \n" ); document.write( " * x̄ = sample mean \n" ); document.write( " * n = sample size\r \n" ); document.write( "\n" ); document.write( "s ≈ 1.283 cm (You can use a calculator or software to compute this)\r \n" ); document.write( "\n" ); document.write( "**2. Determine the Degrees of Freedom (df)**\r \n" ); document.write( "\n" ); document.write( "df = n - 1 = 8 - 1 = 7\r \n" ); document.write( "\n" ); document.write( "**3. Find the t-value**\r \n" ); document.write( "\n" ); document.write( "For a 90% confidence interval and 7 degrees of freedom, we need the t-value that leaves 5% in each tail (α/2 = 0.10/2 = 0.05).\r \n" ); document.write( "\n" ); document.write( "Using a t-table or calculator, the t-value is approximately 1.895.\r \n" ); document.write( "\n" ); document.write( "**4. Calculate the Margin of Error (E)**\r \n" ); document.write( "\n" ); document.write( "E = t * (s / √n) = 1.895 * (1.283 / √8) ≈ 0.861 cm\r \n" ); document.write( "\n" ); document.write( "**5. Construct the Confidence Interval**\r \n" ); document.write( "\n" ); document.write( "Confidence Interval = x̄ ± E = 14.3 ± 0.861\r \n" ); document.write( "\n" ); document.write( "Lower Bound = 14.3 - 0.861 = 13.439 cm \n" ); document.write( "Upper Bound = 14.3 + 0.861 = 15.161 cm\r \n" ); document.write( "\n" ); document.write( "**Therefore, the 90% confidence interval for the true mean height of the plant is approximately (13.44 cm, 15.16 cm).** \n" ); document.write( " |