document.write( "Question 1179602: If 35% of the people in a community use the emergency room at a hospital one year. Find these probabilities for a sample of 12 people A) exactly 4 used the emergency room B) At most 4 used the emergency room C) At least 10 used the emergency room \n" ); document.write( "
Algebra.Com's Answer #850207 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
This problem can be solved using the binomial probability distribution.\r
\n" ); document.write( "\n" ); document.write( "**Given:**\r
\n" ); document.write( "\n" ); document.write( "* Probability of success (using the emergency room): p = 0.35
\n" ); document.write( "* Probability of failure (not using the emergency room): q = 1 - p = 1 - 0.35 = 0.65
\n" ); document.write( "* Sample size: n = 12\r
\n" ); document.write( "\n" ); document.write( "**Binomial Probability Formula:**\r
\n" ); document.write( "\n" ); document.write( "P(X = k) = (nCk) * p^k * q^(n-k)\r
\n" ); document.write( "\n" ); document.write( "Where:\r
\n" ); document.write( "\n" ); document.write( "* nCk = n! / (k! * (n-k)!) (the number of combinations of n items taken k at a time)
\n" ); document.write( "* k = number of successes
\n" ); document.write( "* n = sample size\r
\n" ); document.write( "\n" ); document.write( "**A) Exactly 4 used the emergency room (P(X = 4))**\r
\n" ); document.write( "\n" ); document.write( "* P(X = 4) = (12C4) * (0.35)^4 * (0.65)^8
\n" ); document.write( "* 12C4 = 12! / (4! * 8!) = 495
\n" ); document.write( "* P(X = 4) = 495 * (0.01500625) * (0.031864089)
\n" ); document.write( "* P(X = 4) ≈ 0.2366\r
\n" ); document.write( "\n" ); document.write( "**B) At most 4 used the emergency room (P(X ≤ 4))**\r
\n" ); document.write( "\n" ); document.write( "This means we need to find P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4).\r
\n" ); document.write( "\n" ); document.write( "* P(X = 0) = (12C0) * (0.35)^0 * (0.65)^12 ≈ 0.0037
\n" ); document.write( "* P(X = 1) = (12C1) * (0.35)^1 * (0.65)^11 ≈ 0.0261
\n" ); document.write( "* P(X = 2) = (12C2) * (0.35)^2 * (0.65)^10 ≈ 0.0844
\n" ); document.write( "* P(X = 3) = (12C3) * (0.35)^3 * (0.65)^9 ≈ 0.1744
\n" ); document.write( "* P(X = 4) ≈ 0.2366 (calculated in part A)\r
\n" ); document.write( "\n" ); document.write( "* P(X ≤ 4) ≈ 0.0037 + 0.0261 + 0.0844 + 0.1744 + 0.2366 ≈ 0.5252\r
\n" ); document.write( "\n" ); document.write( "**C) At least 10 used the emergency room (P(X ≥ 10))**\r
\n" ); document.write( "\n" ); document.write( "This means we need to find P(X = 10) + P(X = 11) + P(X = 12).\r
\n" ); document.write( "\n" ); document.write( "* P(X = 10) = (12C10) * (0.35)^10 * (0.65)^2 ≈ 0.00018
\n" ); document.write( "* P(X = 11) = (12C11) * (0.35)^11 * (0.65)^1 ≈ 0.000013
\n" ); document.write( "* P(X = 12) = (12C12) * (0.35)^12 * (0.65)^0 ≈ 0.0000003\r
\n" ); document.write( "\n" ); document.write( "* P(X ≥ 10) ≈ 0.00018 + 0.000013 + 0.0000003 ≈ 0.0001933\r
\n" ); document.write( "\n" ); document.write( "**Summary:**\r
\n" ); document.write( "\n" ); document.write( "* A) P(X = 4) ≈ 0.2366
\n" ); document.write( "* B) P(X ≤ 4) ≈ 0.5252
\n" ); document.write( "* C) P(X ≥ 10) ≈ 0.0001933
\n" ); document.write( "
\n" ); document.write( "
\n" );