document.write( "Question 1209763: Find the constant k so that
\n" );
document.write( "2x^2 + 5xy - 8y^2 + 7x + 25y + k
\n" );
document.write( "can be expressed as the product of two linear factors of the form ax + by + c.
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #850204 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! Let the given expression be \n" ); document.write( "$$2x^2 + 5xy - 8y^2 + 7x + 25y + k$$ \n" ); document.write( "We want to express this as a product of two linear factors of the form $(ax + by + c)(dx + ey + f)$. \n" ); document.write( "First, factor the quadratic terms: \n" ); document.write( "$$2x^2 + 5xy - 8y^2 = (2x - y)(x + 8y)$$ \n" ); document.write( "So, we expect the linear factors to be of the form: \n" ); document.write( "$$(2x - y + c_1)(x + 8y + c_2)$$ \n" ); document.write( "Expanding this, we get: \n" ); document.write( "$$2x^2 + 16xy + 2c_2x - xy - 8y^2 - c_2y + c_1x + 8c_1y + c_1c_2$$ \n" ); document.write( "$$2x^2 + 15xy - 8y^2 + (2c_2 + c_1)x + (8c_1 - c_2)y + c_1c_2$$ \n" ); document.write( "We are given that the expression is \n" ); document.write( "$$2x^2 + 5xy - 8y^2 + 7x + 25y + k$$ \n" ); document.write( "Comparing the coefficients of $xy$, we see that $15xy \neq 5xy$, so the factorization $(2x - y)(x + 8y)$ is incorrect. \n" ); document.write( "Let's try a different factorization of $2x^2 + 5xy - 8y^2$. \n" ); document.write( "We need to find two numbers that multiply to $2(-8) = -16$ and add to $5$. These numbers are $8$ and $-2$, so we can rewrite the middle term as $8xy - 3xy$. \n" ); document.write( "$$2x^2 + 8xy - 3xy - 12y^2 = 2x(x + 4y) - 3y(x + 4y) = (2x - 3y)(x + 4y)$$ \n" ); document.write( "So we expect the linear factors to be of the form: \n" ); document.write( "$$(2x - 3y + c_1)(x + 4y + c_2)$$ \n" ); document.write( "Expanding this, we get: \n" ); document.write( "$$2x^2 + 8xy + 2c_2x - 3xy - 12y^2 - 3c_2y + c_1x + 4c_1y + c_1c_2$$ \n" ); document.write( "$$2x^2 + 5xy - 12y^2 + (2c_2 + c_1)x + (4c_1 - 3c_2)y + c_1c_2$$ \n" ); document.write( "Comparing coefficients: \n" ); document.write( "$$2c_2 + c_1 = 7$$ \n" ); document.write( "$$4c_1 - 3c_2 = 25$$ \n" ); document.write( "$$c_1c_2 = k$$ \n" ); document.write( "Multiply the first equation by 4: \n" ); document.write( "$$8c_2 + 4c_1 = 28$$ \n" ); document.write( "Subtract the second equation from this: \n" ); document.write( "$$8c_2 + 4c_1 - (4c_1 - 3c_2) = 28 - 25$$ \n" ); document.write( "$$11c_2 = 3$$ \n" ); document.write( "$$c_2 = \frac{3}{11}$$ \n" ); document.write( "Substitute $c_2 = \frac{3}{11}$ into $2c_2 + c_1 = 7$: \n" ); document.write( "$$2(\frac{3}{11}) + c_1 = 7$$ \n" ); document.write( "$$\frac{6}{11} + c_1 = 7$$ \n" ); document.write( "$$c_1 = 7 - \frac{6}{11} = \frac{77 - 6}{11} = \frac{71}{11}$$ \n" ); document.write( "Now, find $k = c_1c_2$: \n" ); document.write( "$$k = (\frac{71}{11})(\frac{3}{11}) = \frac{213}{121}$$\r \n" ); document.write( "\n" ); document.write( "Thus, the constant $k$ is $\frac{213}{121}$.\r \n" ); document.write( "\n" ); document.write( "Final Answer: The final answer is $\boxed{213/121}$ \n" ); document.write( " \n" ); document.write( " |