document.write( "Question 1209757: If z is a complex number satisfying\r
\n" ); document.write( "\n" ); document.write( "z + \frac{1}{z} = \sqrt{2},\r
\n" ); document.write( "\n" ); document.write( "calculate\r
\n" ); document.write( "\n" ); document.write( "z^{10} + \frac{1}{z^{10}}.
\n" ); document.write( "

Algebra.Com's Answer #850185 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
Let's solve this problem step-by-step.\r
\n" ); document.write( "\n" ); document.write( "**1. Rewrite the Given Equation:**\r
\n" ); document.write( "\n" ); document.write( "We are given:\r
\n" ); document.write( "\n" ); document.write( "z + 1/z = √2\r
\n" ); document.write( "\n" ); document.write( "Multiply both sides by z:\r
\n" ); document.write( "\n" ); document.write( "z² + 1 = √2z\r
\n" ); document.write( "\n" ); document.write( "Rearrange to form a quadratic equation:\r
\n" ); document.write( "\n" ); document.write( "z² - √2z + 1 = 0\r
\n" ); document.write( "\n" ); document.write( "**2. Solve for z:**\r
\n" ); document.write( "\n" ); document.write( "Using the quadratic formula:\r
\n" ); document.write( "\n" ); document.write( "z = [√2 ± √((√2)² - 4(1)(1))] / 2\r
\n" ); document.write( "\n" ); document.write( "z = [√2 ± √(2 - 4)] / 2\r
\n" ); document.write( "\n" ); document.write( "z = [√2 ± √(-2)] / 2\r
\n" ); document.write( "\n" ); document.write( "z = [√2 ± i√2] / 2\r
\n" ); document.write( "\n" ); document.write( "z = (√2 / 2) ± i(√2 / 2)\r
\n" ); document.write( "\n" ); document.write( "z = (1/√2) ± i(1/√2)\r
\n" ); document.write( "\n" ); document.write( "**3. Express z in Polar Form:**\r
\n" ); document.write( "\n" ); document.write( "We can express z in polar form as z = r(cos θ + i sin θ), where r is the magnitude and θ is the argument.\r
\n" ); document.write( "\n" ); document.write( "* Magnitude (r):
\n" ); document.write( " r = √[(1/√2)² + (1/√2)²] = √(1/2 + 1/2) = √1 = 1\r
\n" ); document.write( "\n" ); document.write( "* Argument (θ):
\n" ); document.write( " Since cos θ = 1/√2 and sin θ = ±1/√2, we have:
\n" ); document.write( " * If z = (1/√2) + i(1/√2), then θ = π/4.
\n" ); document.write( " * If z = (1/√2) - i(1/√2), then θ = -π/4.\r
\n" ); document.write( "\n" ); document.write( "Thus, we have:\r
\n" ); document.write( "\n" ); document.write( "* z = cos(π/4) + i sin(π/4) or
\n" ); document.write( "* z = cos(-π/4) + i sin(-π/4)\r
\n" ); document.write( "\n" ); document.write( "**4. Use De Moivre's Theorem:**\r
\n" ); document.write( "\n" ); document.write( "De Moivre's Theorem states that for any complex number z = r(cos θ + i sin θ) and integer n:\r
\n" ); document.write( "\n" ); document.write( "z^n = r^n (cos(nθ) + i sin(nθ))\r
\n" ); document.write( "\n" ); document.write( "In our case, r = 1, so:\r
\n" ); document.write( "\n" ); document.write( "z^n = cos(nθ) + i sin(nθ)\r
\n" ); document.write( "\n" ); document.write( "**5. Calculate z^10:**\r
\n" ); document.write( "\n" ); document.write( "* If θ = π/4:
\n" ); document.write( " z^10 = cos(10π/4) + i sin(10π/4) = cos(5π/2) + i sin(5π/2) = cos(π/2) + i sin(π/2) = 0 + i(1) = i
\n" ); document.write( "* If θ = -π/4:
\n" ); document.write( " z^10 = cos(-10π/4) + i sin(-10π/4) = cos(-5π/2) + i sin(-5π/2) = cos(-π/2) + i sin(-π/2) = 0 + i(-1) = -i\r
\n" ); document.write( "\n" ); document.write( "**6. Calculate 1/z^10:**\r
\n" ); document.write( "\n" ); document.write( "* If z^10 = i, then 1/z^10 = 1/i = -i.
\n" ); document.write( "* If z^10 = -i, then 1/z^10 = 1/(-i) = i.\r
\n" ); document.write( "\n" ); document.write( "**7. Calculate z^10 + 1/z^10:**\r
\n" ); document.write( "\n" ); document.write( "* If z^10 = i and 1/z^10 = -i, then z^10 + 1/z^10 = i + (-i) = 0.
\n" ); document.write( "* If z^10 = -i and 1/z^10 = i, then z^10 + 1/z^10 = -i + i = 0.\r
\n" ); document.write( "\n" ); document.write( "**Final Answer:**\r
\n" ); document.write( "\n" ); document.write( "z^10 + 1/z^10 = 0
\n" ); document.write( "
\n" ); document.write( "
\n" );