document.write( "Question 1179696: INSTRUCTIONS: Use natural deduction to derive the conclusion in each problem.\r
\n" );
document.write( "\n" );
document.write( "Prove this using natural deduction.
\n" );
document.write( "NOTE: Use * for dot, v for wedge, ~ for tilde, = for triple bar (or copy and paste ≡), and > for horseshoe (or copy and paste ⊃ )\r
\n" );
document.write( "\n" );
document.write( "
\n" );
document.write( "1. N ≡ F
\n" );
document.write( "2. ~F v ~N
\n" );
document.write( "3. D ⊃ N ~(F v D)\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "1. (B ⊃ G) • (F ⊃ N)
\n" );
document.write( "2. ~(G * N) / ~(B * F)\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "1. (J • R) ⊃ H
\n" );
document.write( "2. (R ⊃ H) ⊃ M
\n" );
document.write( "3. ~(P v ~J) / M • ~P\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "1. (F • H) ⊃ N
\n" );
document.write( "2 F v S
\n" );
document.write( "3. H / N v S\r
\n" );
document.write( "\n" );
document.write( "Please any guidance on these 4 questions I'd greatly appreciate it! \n" );
document.write( "
Algebra.Com's Answer #850183 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! Let's solve these natural deduction proofs step-by-step:\r \n" ); document.write( "\n" ); document.write( "1. Proof:\r \n" ); document.write( "\n" ); document.write( "N ≡ F \n" ); document.write( "~F v ~N \n" ); document.write( "D ⊃ N / ~(F v D) \n" ); document.write( "Proof:\r \n" ); document.write( "\n" ); document.write( "(N ⊃ F) * (F ⊃ N) (1, Equivalence) \n" ); document.write( "N ⊃ F (4, Simplification) \n" ); document.write( "F ⊃ N (4, Simplification) \n" ); document.write( "~N ⊃ ~F (5, Contraposition) \n" ); document.write( "~F ⊃ ~N (6, Contraposition) \n" ); document.write( "~N v ~F (7, Implication) \n" ); document.write( "~N (2, 9, Resolution) \n" ); document.write( "~D (3, 10, Modus Tollens) \n" ); document.write( "~F (8, 10, Modus Ponens) \n" ); document.write( "~F * ~D (11, 12, Conjunction) \n" ); document.write( "~(F v D) (13, De Morgan's) \n" ); document.write( "Therefore, ~(F v D) is proven.\r \n" ); document.write( "\n" ); document.write( "2. Proof:\r \n" ); document.write( "\n" ); document.write( "(B ⊃ G) * (F ⊃ N) \n" ); document.write( "~(G * N) / ~(B * F) \n" ); document.write( "Proof:\r \n" ); document.write( "\n" ); document.write( "B ⊃ G (1, Simplification) \n" ); document.write( "F ⊃ N (1, Simplification) \n" ); document.write( "~G v ~N (2, De Morgan's) \n" ); document.write( "~B v G (3, Implication) \n" ); document.write( "~F v N (4, Implication) \n" ); document.write( "~B v ~N (5, 6, Resolution) \n" ); document.write( "~F v ~G (5, 7, Resolution) \n" ); document.write( "~B (8, 9, Resolution) \n" ); document.write( "~F (8, 10, Resolution) \n" ); document.write( "~B * ~F (10, 11, Conjunction) \n" ); document.write( "~(B * F) (12, De Morgan's) \n" ); document.write( "Therefore, ~(B * F) is proven.\r \n" ); document.write( "\n" ); document.write( "3. Proof:\r \n" ); document.write( "\n" ); document.write( "(J * R) ⊃ H \n" ); document.write( "(R ⊃ H) ⊃ M \n" ); document.write( "~(P v ~J) / M * ~P \n" ); document.write( "Proof:\r \n" ); document.write( "\n" ); document.write( "~P * ~~J (3, De Morgan's) \n" ); document.write( "~P (4, Simplification) \n" ); document.write( "~~J (4, Simplification) \n" ); document.write( "J (6, Double Negation) \n" ); document.write( "~(J * ~R) (1, Implication) \n" ); document.write( "~J v ~R (8, De Morgan's) \n" ); document.write( "~R (7, 9, Disjunctive Syllogism) \n" ); document.write( "R ⊃ H (1, Exportation) \n" ); document.write( "M (2, 11, Modus Ponens) \n" ); document.write( "M * ~P (5, 12, Conjunction) \n" ); document.write( "Therefore, M * ~P is proven.\r \n" ); document.write( "\n" ); document.write( "4. Proof:\r \n" ); document.write( "\n" ); document.write( "(F * H) ⊃ N \n" ); document.write( "F v S \n" ); document.write( "H / N v S \n" ); document.write( "Proof:\r \n" ); document.write( "\n" ); document.write( "~F v N (1, Exportation) \n" ); document.write( "F (2, Assumption) \n" ); document.write( "N (4, 5, Disjunctive Syllogism) \n" ); document.write( "N v S (6, Addition) \n" ); document.write( "S (2, Assumption) \n" ); document.write( "N v S (8, Addition) \n" ); document.write( "H (3, Copy) \n" ); document.write( "F * H (5, 10, Conjunction) \n" ); document.write( "N (1, 11, Modus Ponens) \n" ); document.write( "N v S (12, Addition) \n" ); document.write( "N v S (5-7, 8-9, 13, Conditional Proof) \n" ); document.write( "Therefore, N v S is proven. \n" ); document.write( " |