document.write( "Question 1179730: Let X1,...,Xn be a random sample from a distribution with pdf\r
\n" );
document.write( "\n" );
document.write( "f(x, α) = 1 + αx / 2 , −1 ≤ x ≤ 1, and − 1 ≤ α ≤ 1. \r
\n" );
document.write( "\n" );
document.write( "Find the moment estimators for α.\r
\n" );
document.write( "\n" );
document.write( "Thank you... \n" );
document.write( "
Algebra.Com's Answer #850178 by CPhill(1987) You can put this solution on YOUR website! Here's how to find the moment estimator for α:\r \n" ); document.write( "\n" ); document.write( "**1. Find the First Population Moment (E[X]):**\r \n" ); document.write( "\n" ); document.write( "The first population moment is the expected value (mean) of the distribution:\r \n" ); document.write( "\n" ); document.write( "E[X] = ∫[-1, 1] x * f(x, α) dx \n" ); document.write( "E[X] = ∫[-1, 1] x * (1 + αx / 2) dx \n" ); document.write( "E[X] = ∫[-1, 1] (x + αx² / 2) dx \n" ); document.write( "E[X] = [x²/2 + αx³/6] evaluated from -1 to 1 \n" ); document.write( "E[X] = [(1/2 + α/6) - (1/2 - α/6)] \n" ); document.write( "E[X] = α/3\r \n" ); document.write( "\n" ); document.write( "**2. Find the First Sample Moment (X̄):**\r \n" ); document.write( "\n" ); document.write( "The first sample moment is the sample mean, denoted as X̄:\r \n" ); document.write( "\n" ); document.write( "X̄ = (1/n) * Σ[i=1 to n] Xi\r \n" ); document.write( "\n" ); document.write( "**3. Equate Population and Sample Moments:**\r \n" ); document.write( "\n" ); document.write( "Set the first population moment equal to the first sample moment:\r \n" ); document.write( "\n" ); document.write( "E[X] = X̄ \n" ); document.write( "α/3 = X̄\r \n" ); document.write( "\n" ); document.write( "**4. Solve for α:**\r \n" ); document.write( "\n" ); document.write( "α = 3 * X̄\r \n" ); document.write( "\n" ); document.write( "**Therefore, the moment estimator for α is:**\r \n" ); document.write( "\n" ); document.write( "α̂ = 3 * X̄ = (3/n) * Σ[i=1 to n] Xi \n" ); document.write( " \n" ); document.write( " |