document.write( "Question 1179801: Arrange the functions for which the result is a non-infinite value and the limit exists in ascending order of their limit values as x tends to infinity. \r
\n" );
document.write( "\n" );
document.write( "Only 6 functions will be used\r
\n" );
document.write( "\n" );
document.write( "f(x)=x^2-1,000/x-5
\n" );
document.write( "j(x)=x^2-1/|7x-1|
\n" );
document.write( "h(x)=x^3-x^2+4/1-3x^3
\n" );
document.write( "i(x)=x-1/|1-4x|
\n" );
document.write( "k(x)=5x+1,000/x^2
\n" );
document.write( "m(x)=- 4x^2-6/1-4x^2
\n" );
document.write( "g(x)=|4x-1|/x-4
\n" );
document.write( "l(x)=5x^2-4/x^2+1\r
\n" );
document.write( "\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #850170 by CPhill(1987)![]() ![]() You can put this solution on YOUR website! Here's the analysis of the functions and their limits as x approaches infinity:\r \n" ); document.write( "\n" ); document.write( "**1. Analyze the functions:**\r \n" ); document.write( "\n" ); document.write( "* **f(x) = (x² - 1000) / (x - 5):** \n" ); document.write( " * As x → ∞, the x² term dominates, and the function behaves like x²/x = x. \n" ); document.write( " * Therefore, the limit is ∞ (infinite).\r \n" ); document.write( "\n" ); document.write( "* **j(x) = (x² - 1) / |7x - 1|:** \n" ); document.write( " * As x → ∞, the x² term in the numerator and the 7x term in the denominator dominate. \n" ); document.write( " * The function behaves like x²/7x = x/7. \n" ); document.write( " * Therefore, the limit is ∞ (infinite).\r \n" ); document.write( "\n" ); document.write( "* **h(x) = (x³ - x² + 4) / (1 - 3x³):** \n" ); document.write( " * As x → ∞, the x³ terms dominate. \n" ); document.write( " * The function behaves like x³ / (-3x³) = -1/3. \n" ); document.write( " * Therefore, the limit is -1/3.\r \n" ); document.write( "\n" ); document.write( "* **i(x) = (x - 1) / |1 - 4x|:** \n" ); document.write( " * As x → ∞, the x terms dominate. \n" ); document.write( " * The function behaves like x / |-4x| = x / 4x = 1/4. \n" ); document.write( " * Therefore, the limit is 1/4.\r \n" ); document.write( "\n" ); document.write( "* **k(x) = (5x + 1000) / x²:** \n" ); document.write( " * As x → ∞, the x² term in the denominator dominates. \n" ); document.write( " * The function behaves like 5x / x² = 5/x. \n" ); document.write( " * Therefore, the limit is 0.\r \n" ); document.write( "\n" ); document.write( "* **m(x) = (-4x² - 6) / (1 - 4x²):** \n" ); document.write( " * As x → ∞, the x² terms dominate. \n" ); document.write( " * The function behaves like -4x² / (-4x²) = 1. \n" ); document.write( " * Therefore, the limit is 1.\r \n" ); document.write( "\n" ); document.write( "* **g(x) = |4x - 1| / (x - 4):** \n" ); document.write( " * As x → ∞, the 4x term in the numerator and the x term in the denominator dominate. \n" ); document.write( " * The function behaves like 4x / x = 4. \n" ); document.write( " * Therefore, the limit is 4.\r \n" ); document.write( "\n" ); document.write( "* **l(x) = (5x² - 4) / (x² + 1):** \n" ); document.write( " * As x → ∞, the x² terms dominate. \n" ); document.write( " * The function behaves like 5x² / x² = 5. \n" ); document.write( " * Therefore, the limit is 5.\r \n" ); document.write( "\n" ); document.write( "**2. Identify the functions with non-infinite limits:**\r \n" ); document.write( "\n" ); document.write( "The functions with non-infinite limits are h(x), i(x), k(x), m(x), g(x), and l(x).\r \n" ); document.write( "\n" ); document.write( "**3. Arrange in ascending order:**\r \n" ); document.write( "\n" ); document.write( "* h(x) = -1/3 ≈ -0.333 \n" ); document.write( "* k(x) = 0 \n" ); document.write( "* i(x) = 1/4 = 0.25 \n" ); document.write( "* m(x) = 1 \n" ); document.write( "* g(x) = 4 \n" ); document.write( "* l(x) = 5\r \n" ); document.write( "\n" ); document.write( "**Final Answer:**\r \n" ); document.write( "\n" ); document.write( "The functions in ascending order of their limits as x tends to infinity are: h(x), k(x), i(x), m(x), g(x), l(x). \n" ); document.write( " \n" ); document.write( " |