document.write( "Question 1179864: I. Use an ordinary proof (not conditional or indirect) to solve the following arguments.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "1)\r
\n" ); document.write( "\n" ); document.write( "1. I v (N • F)\r
\n" ); document.write( "\n" ); document.write( "2. I ⊃ F /F\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "2)\r
\n" ); document.write( "\n" ); document.write( "1. P ⊃ ~M\r
\n" ); document.write( "\n" ); document.write( "2. C ⊃ M\r
\n" ); document.write( "\n" ); document.write( "3. ~L v C\r
\n" ); document.write( "\n" ); document.write( "4. (~P ⊃ ~E) • (~E ⊃ ~C)\r
\n" ); document.write( "\n" ); document.write( "5. P v ~P /~L\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "3)\r
\n" ); document.write( "\n" ); document.write( "1. O ⊃ (Q • N)\r
\n" ); document.write( "\n" ); document.write( "2. (N Ú E) ⊃ S / O ⊃ S\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #850161 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
Let's break down each argument step-by-step using ordinary proofs:\r
\n" ); document.write( "\n" ); document.write( "**1) Argument:**\r
\n" ); document.write( "\n" ); document.write( "1. I v (N • F)
\n" ); document.write( "2. I ⊃ F / F\r
\n" ); document.write( "\n" ); document.write( "**Proof:**\r
\n" ); document.write( "\n" ); document.write( "3. ~I ∨ F (2, Implication)
\n" ); document.write( "4. I ∨ (N • F) (1, Copy)
\n" ); document.write( "5. ~I ∨ F (3, Copy)
\n" ); document.write( "6. F ∨ ~I (5, Commutation)
\n" ); document.write( "7. F ∨ (N • F) (4, Resolution, 6)
\n" ); document.write( "8. F ∨ (N • F) (7, Copy)
\n" ); document.write( "9. F ∨ N (8, Distribution)
\n" ); document.write( "10. F (9, Simplification)\r
\n" ); document.write( "\n" ); document.write( "**Therefore, F is proven.**\r
\n" ); document.write( "\n" ); document.write( "**2) Argument:**\r
\n" ); document.write( "\n" ); document.write( "1. P ⊃ ~M
\n" ); document.write( "2. C ⊃ M
\n" ); document.write( "3. ~L v C
\n" ); document.write( "4. (~P ⊃ ~E) • (~E ⊃ ~C)
\n" ); document.write( "5. P v ~P / ~L\r
\n" ); document.write( "\n" ); document.write( "**Proof:**\r
\n" ); document.write( "\n" ); document.write( "6. ~P ∨ ~M (1, Implication)
\n" ); document.write( "7. ~C ∨ M (2, Implication)
\n" ); document.write( "8. ~P ⊃ ~E (4, Simplification)
\n" ); document.write( "9. ~E ⊃ ~C (4, Simplification)
\n" ); document.write( "10. P ∨ ~P (5, Copy)
\n" ); document.write( "11. P (10, Tautology)
\n" ); document.write( "12. ~M (6, 11, Modus Ponens)
\n" ); document.write( "13. ~C (7, 12, Modus Tollens)
\n" ); document.write( "14. ~L (3, 13, Disjunctive Syllogism)\r
\n" ); document.write( "\n" ); document.write( "**Therefore, ~L is proven.**\r
\n" ); document.write( "\n" ); document.write( "**3) Argument:**\r
\n" ); document.write( "\n" ); document.write( "1. O ⊃ (Q • N)
\n" ); document.write( "2. (N ∨ E) ⊃ S / O ⊃ S\r
\n" ); document.write( "\n" ); document.write( "**Proof:**\r
\n" ); document.write( "\n" ); document.write( "3. ~O ∨ (Q • N) (1, Implication)
\n" ); document.write( "4. N ∨ E ⊃ S (2, Copy)
\n" ); document.write( "5. ~O ∨ Q (3, Simplification)
\n" ); document.write( "6. ~O ∨ N (3, Simplification)
\n" ); document.write( "7. N ∨ E (6, Addition)
\n" ); document.write( "8. S (4, 7, Modus Ponens)
\n" ); document.write( "9. ~O ∨ S (6, 8, Hypothetical Syllogism)
\n" ); document.write( "10. O ⊃ S (9, Implication)\r
\n" ); document.write( "\n" ); document.write( "**Therefore, O ⊃ S is proven.**
\n" ); document.write( "
\n" ); document.write( "
\n" );