document.write( "Question 1179992: The personnel director of a large corporation wishes to study absenteeism among
\n" ); document.write( "clerical workers at the corporation• s central office during the year. A random sample of 25
\n" ); document.write( "clerical workers reveals the following: [25 Marks]
\n" ); document.write( "€ Absenteeism: X = 9.7 days, S = 4.0 days.
\n" ); document.write( "€ 12 clerical workers were absent more than 10 days.
\n" ); document.write( "a. Construct a 95% confidence interval estimate for the mean number of absences for
\n" ); document.write( "clerical workers during the year.\r
\n" ); document.write( "\n" ); document.write( "b. Construct a 95% confidence interval estimate for the population proportion of clerical
\n" ); document.write( "workers absent more than 10 days during the year. Suppose that the personnel director
\n" ); document.write( "also wishes to take a survey in a branch office. Answer these questions
\n" ); document.write( "c. What sample size is needed to have 95% confidence in estimating the population
\n" ); document.write( "mean absenteeism to within ± 1.5 days if the population standard deviation is
\n" ); document.write( "estimated to be 4.5 days?
\n" ); document.write( "d. How many clerical workers need to be selected to have 90% confidence in estimating
\n" ); document.write( "the population proportion to within ± 0.075 if no previous estimate is available?
\n" ); document.write( "e. Based on (c) and (d), what sample size is needed if a single survey is being
\n" ); document.write( "conducted?
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #850129 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
Here's how to solve this problem step-by-step:\r
\n" ); document.write( "\n" ); document.write( "**a. 95% Confidence Interval for Mean Absences:**\r
\n" ); document.write( "\n" ); document.write( "1. **Identify Given Information:**
\n" ); document.write( " * Sample mean (x̄) = 9.7 days
\n" ); document.write( " * Sample standard deviation (s) = 4.0 days
\n" ); document.write( " * Sample size (n) = 25
\n" ); document.write( " * Confidence level = 95%\r
\n" ); document.write( "\n" ); document.write( "2. **Determine Degrees of Freedom:**
\n" ); document.write( " * df = n - 1 = 25 - 1 = 24\r
\n" ); document.write( "\n" ); document.write( "3. **Find the Critical t-Value:**
\n" ); document.write( " * For a 95% confidence level and df = 24, the critical t-value (t*) is approximately 2.064 (from a t-table or calculator).\r
\n" ); document.write( "\n" ); document.write( "4. **Calculate the Margin of Error (E):**
\n" ); document.write( " * E = t* * (s / √n)
\n" ); document.write( " * E = 2.064 * (4.0 / √25)
\n" ); document.write( " * E = 2.064 * (4.0 / 5)
\n" ); document.write( " * E = 2.064 * 0.8 = 1.6512\r
\n" ); document.write( "\n" ); document.write( "5. **Construct the Confidence Interval:**
\n" ); document.write( " * Lower Bound = x̄ - E = 9.7 - 1.6512 = 8.0488
\n" ); document.write( " * Upper Bound = x̄ + E = 9.7 + 1.6512 = 11.3512\r
\n" ); document.write( "\n" ); document.write( " The 95% confidence interval is (8.0488, 11.3512) days.\r
\n" ); document.write( "\n" ); document.write( "**b. 95% Confidence Interval for Proportion of Absences > 10 Days:**\r
\n" ); document.write( "\n" ); document.write( "1. **Calculate Sample Proportion (p̂):**
\n" ); document.write( " * p̂ = 12 / 25 = 0.48\r
\n" ); document.write( "\n" ); document.write( "2. **Find the Critical z-Value:**
\n" ); document.write( " * For a 95% confidence level, the critical z-value (z*) is 1.96.\r
\n" ); document.write( "\n" ); document.write( "3. **Calculate the Margin of Error (E):**
\n" ); document.write( " * E = z* * √(p̂(1 - p̂) / n)
\n" ); document.write( " * E = 1.96 * √(0.48 * 0.52 / 25)
\n" ); document.write( " * E = 1.96 * √(0.2496 / 25)
\n" ); document.write( " * E = 1.96 * √0.009984
\n" ); document.write( " * E = 1.96 * 0.09992 ≈ 0.1958\r
\n" ); document.write( "\n" ); document.write( "4. **Construct the Confidence Interval:**
\n" ); document.write( " * Lower Bound = p̂ - E = 0.48 - 0.1958 = 0.2842
\n" ); document.write( " * Upper Bound = p̂ + E = 0.48 + 0.1958 = 0.6758\r
\n" ); document.write( "\n" ); document.write( " The 95% confidence interval is (0.2842, 0.6758).\r
\n" ); document.write( "\n" ); document.write( "**c. Sample Size for Mean Absenteeism (± 1.5 days):**\r
\n" ); document.write( "\n" ); document.write( "1. **Identify Given Information:**
\n" ); document.write( " * Margin of error (E) = 1.5 days
\n" ); document.write( " * Population standard deviation (σ) = 4.5 days
\n" ); document.write( " * Confidence level = 95% (z* = 1.96)\r
\n" ); document.write( "\n" ); document.write( "2. **Use the Sample Size Formula:**
\n" ); document.write( " * n = (z* * σ / E)²
\n" ); document.write( " * n = (1.96 * 4.5 / 1.5)²
\n" ); document.write( " * n = (8.82 / 1.5)²
\n" ); document.write( " * n = 5.88²
\n" ); document.write( " * n = 34.5744\r
\n" ); document.write( "\n" ); document.write( "3. **Round Up:**
\n" ); document.write( " * Since sample size must be a whole number, round up to 35.\r
\n" ); document.write( "\n" ); document.write( "**d. Sample Size for Proportion (± 0.075):**\r
\n" ); document.write( "\n" ); document.write( "1. **Identify Given Information:**
\n" ); document.write( " * Margin of error (E) = 0.075
\n" ); document.write( " * Confidence level = 90% (z* = 1.645)
\n" ); document.write( " * No previous estimate, so use p̂ = 0.5\r
\n" ); document.write( "\n" ); document.write( "2. **Use the Sample Size Formula:**
\n" ); document.write( " * n = (z*² * p̂ * (1 - p̂)) / E²
\n" ); document.write( " * n = (1.645² * 0.5 * 0.5) / 0.075²
\n" ); document.write( " * n = (2.706025 * 0.25) / 0.005625
\n" ); document.write( " * n = 0.67650625 / 0.005625
\n" ); document.write( " * n = 120.2678\r
\n" ); document.write( "\n" ); document.write( "3. **Round Up:**
\n" ); document.write( " * Round up to 121.\r
\n" ); document.write( "\n" ); document.write( "**e. Sample Size for a Single Survey:**\r
\n" ); document.write( "\n" ); document.write( "To conduct a single survey that satisfies both requirements, you need to use the *larger* of the two calculated sample sizes.\r
\n" ); document.write( "\n" ); document.write( "Therefore, the required sample size is 121.
\n" ); document.write( "
\n" ); document.write( "
\n" );