document.write( "Question 1180121: A random sample of 10 observations was drawn from a large normally distributed population. The data is below.\r
\n" ); document.write( "\n" ); document.write( "14 12 20 21 18 22 18 14 12 17 \r
\n" ); document.write( "\n" ); document.write( "Test to determine if we can infer at the 3% significance level that the population mean is not equal to 17, filling in the requested information below.\r
\n" ); document.write( "\n" ); document.write( "A. The value of the standardized test statistic: \r
\n" ); document.write( "\n" ); document.write( "Note: For the next part, your answer should use interval notation. An answer of the form (−∞,𝑎)
\n" ); document.write( " is expressed (-infty, a), an answer of the form (𝑏,∞) is expressed (b, infty), and an answer of the form (−∞,𝑎)∪(𝑏,∞) is expressed (-infty, a)U(b, infty).\r
\n" ); document.write( "\n" ); document.write( "B. The rejection region for the standardized test statistic: \r
\n" ); document.write( "\n" ); document.write( "C. Your decision for the hypothesis test: \r
\n" ); document.write( "\n" ); document.write( "A. Reject 𝐻0
\n" ); document.write( "B. Do Not Reject 𝐻0
\n" ); document.write( "C. Reject 𝐻1
\n" ); document.write( "D. Do Not Reject 𝐻1
\n" ); document.write( "

Algebra.Com's Answer #850124 by CPhill(1987)\"\" \"About 
You can put this solution on YOUR website!
Here's how to conduct the hypothesis test:\r
\n" ); document.write( "\n" ); document.write( "**1. State the Hypotheses:**\r
\n" ); document.write( "\n" ); document.write( "* **Null Hypothesis (H0):** The population mean (μ) is equal to 17. (μ = 17)
\n" ); document.write( "* **Alternative Hypothesis (H1):** The population mean (μ) is *not* equal to 17. (μ ≠ 17) This is a two-tailed test.\r
\n" ); document.write( "\n" ); document.write( "**2. Significance Level:** α = 0.03\r
\n" ); document.write( "\n" ); document.write( "**3. Calculate the Sample Statistics:**\r
\n" ); document.write( "\n" ); document.write( "* **Sample Size (n):** 10
\n" ); document.write( "* **Sample Mean (x̄):**
\n" ); document.write( " x̄ = (14 + 12 + 20 + 21 + 18 + 22 + 18 + 14 + 12 + 17) / 10 = 168 / 10 = 16.8
\n" ); document.write( "* **Sample Standard Deviation (s):**
\n" ); document.write( " 1. Calculate the squared deviations from the mean:
\n" ); document.write( " (14-16.8)^2 = 7.84
\n" ); document.write( " (12-16.8)^2 = 23.04
\n" ); document.write( " (20-16.8)^2 = 10.24
\n" ); document.write( " (21-16.8)^2 = 17.64
\n" ); document.write( " (18-16.8)^2 = 0.04
\n" ); document.write( " (22-16.8)^2 = 27.04
\n" ); document.write( " (18-16.8)^2 = 0.04
\n" ); document.write( " (14-16.8)^2 = 7.84
\n" ); document.write( " (12-16.8)^2 = 23.04
\n" ); document.write( " (17-16.8)^2 = 0.04
\n" ); document.write( " Sum of squared deviations = 116.8\r
\n" ); document.write( "\n" ); document.write( " s = √[Σ(xᵢ - x̄)² / (n - 1)] = √(116.8 / 9) ≈ √12.98 ≈ 3.603\r
\n" ); document.write( "\n" ); document.write( "**4. Calculate the Test Statistic (t-score):**\r
\n" ); document.write( "\n" ); document.write( "Since the sample size is small (n < 30) and the population standard deviation is unknown, we use a t-test.\r
\n" ); document.write( "\n" ); document.write( "t = (x̄ - μ) / (s / √n)
\n" ); document.write( "t = (16.8 - 17) / (3.603 / √10)
\n" ); document.write( "t = -0.2 / (3.603 / 3.162)
\n" ); document.write( "t = -0.2 / 1.139
\n" ); document.write( "t ≈ -0.176\r
\n" ); document.write( "\n" ); document.write( "**A. The value of the standardized test statistic:** -0.176\r
\n" ); document.write( "\n" ); document.write( "**5. Determine the Degrees of Freedom:**\r
\n" ); document.write( "\n" ); document.write( "Degrees of freedom (df) = n - 1 = 10 - 1 = 9\r
\n" ); document.write( "\n" ); document.write( "**6. Find the Critical t-values:**\r
\n" ); document.write( "\n" ); document.write( "For a two-tailed test with α = 0.03 and df = 9, we need to find the t-values that correspond to α/2 = 0.015 in each tail. Using a t-table or calculator, we find the critical t-values are approximately ±2.821.\r
\n" ); document.write( "\n" ); document.write( "**B. The rejection region for the standardized test statistic:** (-infty, -2.821)U(2.821, infty)\r
\n" ); document.write( "\n" ); document.write( "**7. Make a Decision:**\r
\n" ); document.write( "\n" ); document.write( "Compare the calculated t-statistic (-0.176) to the critical t-values (±2.821).\r
\n" ); document.write( "\n" ); document.write( "* -2.821 < -0.176 < 2.821\r
\n" ); document.write( "\n" ); document.write( "Since the calculated t-statistic falls *within* the range of the critical t-values, we *fail to reject* the null hypothesis.\r
\n" ); document.write( "\n" ); document.write( "**C. Your decision for the hypothesis test:** B. Do Not Reject H0
\n" ); document.write( "
\n" ); document.write( "
\n" );