document.write( "Question 1209745: Fill in the blanks, to complete the factorization:\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "(a^2 + b^2 - c^2)^2 - 4a^2 b^2 - 4a^2 c^2 + 4b^2 c^2 = (a + ___)(a + ___)(a + ___)(a + ___) \n" );
document.write( "
Algebra.Com's Answer #850112 by ikleyn(52781)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( "Fill in the blanks, to complete the factorization:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "(a^2 + b^2 - c^2)^2 - 4a^2 b^2 - 4a^2 c^2 + 4b^2 c^2 = (a + ___)(a + ___)(a + ___)(a + ___) \n" ); document.write( "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( " Step 1. Decompose into the product of two quadratic polynomials\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " (a^2 + b^2 - c^2)^2 - 4a^2*b^2 - 4a^2*c^2 + 4b^2*c^2 =\r\n" ); document.write( "\r\n" ); document.write( " = a^4 + b^4 + c^4 + 2a^2*b^2 - 2a^2*c^2 - 2b^2*c^2 - 4a^2*b^2 - 4a^2*c^2 + 4b^2*c^2 = \r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " next step make a routine combining like terms\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " = a^4 + b^4 + c^4 - 2a^2*b^2 - 6a^2*c^2 + 2b^2*c^2 = \r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " next step make grouping/re-grouping\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " = (a^4 + b^4 + c^4 2 - 2a^2*b^2 - 2a^2*c^2 + 2b^2*c^2) - 4a^2*c*2 = \r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " next step complete the squares\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " = (-a^2 + b^2 + c^2)^2 - 4a^2*c^2 = \r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " next step factor as the difference of squares \r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " = (-a^2 + b^2 + c^2 - 2ac) * (-a^2 + b^2 + c^2 + 2ac) = \r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " next step is changing the signs everywhere in both parentheses \r\n" ); document.write( " and light re-arranging in each parentheses (for further convenience)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " = (a^2 + 2ac - b^2 - c^2) * (a^2 - 2ac - b^2 - c^2).\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " Step 2. Decompose each parentheses as the product of linear binomials relative \"a\"\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Now we want to decompose first parentheses (a^2 + 2ac - (b^2 + c^2)). (1)\r\n" ); document.write( "\r\n" ); document.write( "Consider this aggregate as a standard quadratic trinomial a^2 + 2ac + X relative to variable 'a'.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Remember how to decompose a trinomial via its roots\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " a^2 + 2ac + X =\r \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |