document.write( "Question 1181354: Prove that |z1 + z2 | < or = |z1|+|z2|. Use |z|^2 = mod z times z, Re(z) = (z + mod z)/ 2, and Re(z) < or = |z|. The inequality is known as the Triangle Inequality. \n" ); document.write( "
| Algebra.Com's Answer #850056 by CPhill(1987)     You can put this solution on YOUR website! Here's the proof of the triangle inequality using the properties you provided:\r \n" ); document.write( "\n" ); document.write( "1. **Start with the square of the absolute value:**\r \n" ); document.write( "\n" ); document.write( " |z₁ + z₂|² = (z₁ + z₂)(z₁ + z₂)* (where * denotes the complex conjugate)\r \n" ); document.write( "\n" ); document.write( "2. **Expand the expression:**\r \n" ); document.write( "\n" ); document.write( " |z₁ + z₂|² = z₁z₁* + z₁z₂* + z₂z₁* + z₂z₂*\r \n" ); document.write( "\n" ); document.write( "3. **Use the property |z|² = z * z*:**\r \n" ); document.write( "\n" ); document.write( " |z₁ + z₂|² = |z₁|² + z₁z₂* + z₂z₁* + |z₂|²\r \n" ); document.write( "\n" ); document.write( "4. **Rewrite the middle terms using conjugates:** Notice that z₂z₁* is the conjugate of z₁z₂*. So we can write:\r \n" ); document.write( "\n" ); document.write( " z₂z₁* = (z₁z₂*)*\r \n" ); document.write( "\n" ); document.write( "5. **Substitute this back into the equation:**\r \n" ); document.write( "\n" ); document.write( " |z₁ + z₂|² = |z₁|² + z₁z₂* + (z₁z₂*)* + |z₂|²\r \n" ); document.write( "\n" ); document.write( "6. **Use the property Re(z) = (z + z*)/2:** The middle terms can be expressed using the real part:\r \n" ); document.write( "\n" ); document.write( " z₁z₂* + (z₁z₂*)* = 2 * Re(z₁z₂*)\r \n" ); document.write( "\n" ); document.write( "7. **Substitute this into the equation:**\r \n" ); document.write( "\n" ); document.write( " |z₁ + z₂|² = |z₁|² + 2 * Re(z₁z₂*) + |z₂|²\r \n" ); document.write( "\n" ); document.write( "8. **Use the property Re(z) ≤ |z|:**\r \n" ); document.write( "\n" ); document.write( " |z₁ + z₂|² ≤ |z₁|² + 2|z₁z₂*| + |z₂|²\r \n" ); document.write( "\n" ); document.write( "9. **Use the property |ab| = |a||b|:**\r \n" ); document.write( "\n" ); document.write( " |z₁ + z₂|² ≤ |z₁|² + 2|z₁||z₂*| + |z₂|²\r \n" ); document.write( "\n" ); document.write( "10. **Since |z| = |z*|, we have:**\r \n" ); document.write( "\n" ); document.write( " |z₁ + z₂|² ≤ |z₁|² + 2|z₁||z₂| + |z₂|²\r \n" ); document.write( "\n" ); document.write( "11. **Recognize the perfect square:** The right side is a perfect square:\r \n" ); document.write( "\n" ); document.write( " |z₁ + z₂|² ≤ (|z₁| + |z₂|)²\r \n" ); document.write( "\n" ); document.write( "12. **Take the square root of both sides:** Since absolute values are non-negative, we can take the square root without changing the inequality:\r \n" ); document.write( "\n" ); document.write( " |z₁ + z₂| ≤ |z₁| + |z₂|\r \n" ); document.write( "\n" ); document.write( "This completes the proof of the triangle inequality. \n" ); document.write( " \n" ); document.write( " |