document.write( "Question 1209738: Let r, s, and t be solutions of the equation 3x^3 - 4x^2 - 2x + 12 = 0. Compute
\n" );
document.write( "\frac{rs}{t^2} + \frac{rt}{s^2} + \frac{st}{r^2}. \n" );
document.write( "
Algebra.Com's Answer #850046 by CPhill(1987)![]() ![]() You can put this solution on YOUR website! Here's how to solve this problem:\r \n" ); document.write( "\n" ); document.write( "1. **Vieta's Formulas:** \n" ); document.write( " For a cubic equation of the form ax³ + bx² + cx + d = 0, Vieta's formulas relate the coefficients to sums and products of the roots. In our case, 3x³ - 4x² - 2x + 12 = 0, so a = 3, b = -4, c = -2, and d = 12. The formulas we'll need are:\r \n" ); document.write( "\n" ); document.write( " * rst = -d/a = -12/3 = -4 \n" ); document.write( " * rs + rt + st = c/a = -2/3\r \n" ); document.write( "\n" ); document.write( "2. **Rewrite the Expression:** \n" ); document.write( " We want to compute:\r \n" ); document.write( "\n" ); document.write( " (rs/t²) + (rt/s²) + (st/r²) = (r³s³ + r³t³ + s³t³) / (r²s²t²)\r \n" ); document.write( "\n" ); document.write( "3. **Simplify using Vieta's Formulas:** \n" ); document.write( " We know that r²s²t² = (rst)² = (-4)² = 16. So, we need to find r³s³ + r³t³ + s³t³.\r \n" ); document.write( "\n" ); document.write( "4. **Key Identity:** \n" ); document.write( " Recall the identity: A³ + B³ + C³ - 3ABC = (A + B + C)(A² + B² + C² - AB - BC - CA) \n" ); document.write( " Let A = rs, B = rt, and C = st. Then:\r \n" ); document.write( "\n" ); document.write( " (rs)³ + (rt)³ + (st)³ - 3(rst)² = (rs + rt + st)[(rs)² + (rt)² + (st)² - rs*rt - rs*st - rt*st]\r \n" ); document.write( "\n" ); document.write( " We have rs + rt + st = -2/3 and rst = -4. Substituting these values:\r \n" ); document.write( "\n" ); document.write( " r³s³ + r³t³ + s³t³ - 3(-4)² = (-2/3)[(rs)² + (rt)² + (st)² - r²st - rs²t - rst²] \n" ); document.write( " r³s³ + r³t³ + s³t³ - 48 = (-2/3)[(rs)² + (rt)² + (st)² - rt(rs + st + rt)] \n" ); document.write( " r³s³ + r³t³ + s³t³ - 48 = (-2/3)[(rs)² + (rt)² + (st)² - (-4)(-2/3)] \n" ); document.write( " r³s³ + r³t³ + s³t³ - 48 = (-2/3)[(rs)² + (rt)² + (st)² - 8/3]\r \n" ); document.write( "\n" ); document.write( " We also know that (rs + rt + st)² = (rs)² + (rt)² + (st)² + 2rst(r + s + t). \n" ); document.write( " (-2/3)² = (rs)² + (rt)² + (st)² + 2(-4)(4/3) \n" ); document.write( " 4/9 = (rs)² + (rt)² + (st)² - 32/3 \n" ); document.write( " (rs)² + (rt)² + (st)² = 4/9 + 96/9 = 100/9\r \n" ); document.write( "\n" ); document.write( " Now plug this back into the equation: \n" ); document.write( " r³s³ + r³t³ + s³t³ - 48 = (-2/3)[100/9 - 8/3] \n" ); document.write( " r³s³ + r³t³ + s³t³ - 48 = (-2/3)[100/9 - 24/9] \n" ); document.write( " r³s³ + r³t³ + s³t³ - 48 = (-2/3)(76/9) \n" ); document.write( " r³s³ + r³t³ + s³t³ = 48 - 152/27 \n" ); document.write( " r³s³ + r³t³ + s³t³ = (1296 - 152)/27 = 1144/27\r \n" ); document.write( "\n" ); document.write( "5. **Final Calculation:**\r \n" ); document.write( "\n" ); document.write( " (r³s³ + r³t³ + s³t³) / (r²s²t²) = (1144/27) / 16 = 1144 / (27 * 16) = 1144 / 432 = 143/54\r \n" ); document.write( "\n" ); document.write( "Final Answer: The final answer is $\boxed{143/54}$ \n" ); document.write( " \n" ); document.write( " |