document.write( "Question 1209723: Let p, q, r, and s be the roots of g(x) = 3x^4 - 8x^3 + 5x^2 + 2x - 17 - 2x^4 + 10x^3 + 11x^2 + 18x - 14.
\n" );
document.write( "Compute p^2 + q^2 + r^2 + s^2. \n" );
document.write( "
Algebra.Com's Answer #850025 by ikleyn(52781)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( "Let p, q, r, and s be the roots of g(x) = 3x^4 - 8x^3 + 5x^2 + 2x - 17 - 2x^4 + 10x^3 + 11x^2 + 18x - 14. \n" ); document.write( "Compute p^2 + q^2 + r^2 + s^2. \n" ); document.write( "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Solution\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "Reduce the polynomial to the standard form, combining like terms\r\n" ); document.write( "\r\n" ); document.write( " 3x^4 - 8x^3 + 5x^2 + 2x - 17 - 2x^4 + 10x^3 + 11x^2 + 18x - 14 = x^4 + 2x^3 + 16x^2 + 20x - 31.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Notice that \r\n" ); document.write( "\r\n" ); document.write( " p^2 + q^2 + r^2 + s^2 = (p + q + r + s)^2 - 2*(pq + pr +ps + qr + qs + rs) (standard decomposition for the square of a sum)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Also notice that the leading coefficient of the polynomial standard form at x^4 is 1.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Due to Vieta's theorem\r\n" ); document.write( "\r\n" ); document.write( " pq + pr + ps + qr + qs + rs = 16 (the sum of in-pairs products of the roots is the coefficient at x^2)\r\n" ); document.write( "\r\n" ); document.write( " p + q + r + s = -2 (the sum of the roots is the coefficient at x^3 with the opposite sign).\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Therefore,\r\n" ); document.write( "\r\n" ); document.write( " p^2 + q^2 + r^2 + s^2 = (-2)^2 - 2*16 = 4 - 32 = -28.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "ANSWER. p^2 + q^2 + r^2 + s^2 = -28. \r\n" ); document.write( "\r\n" ); document.write( " (by the way, since the sum of squares is negative, it means that some roots are complex numbers).\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |