document.write( "Question 1209724: Let p, q, r, and s be the roots of g(x) = 3x^4 - 8x^3 + 5x^2 + 2x - 17 - 2x^4 + 10x^3 + 11x^2 + 18x - 14.
\n" );
document.write( "Compute p^2 qrs + pq^2 rs + pqr^2 s + pqrs^2. \n" );
document.write( "
Algebra.Com's Answer #850024 by ikleyn(52781)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( "Let p, q, r, and s be the roots of g(x) = 3x^4 - 8x^3 + 5x^2 + 2x - 17 - 2x^4 + 10x^3 + 11x^2 + 18x - 14. \n" ); document.write( "Compute p^2*qrs + pq^2*rs + pqr^2*s + pqrs^2. \n" ); document.write( "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "Reduce the polynomial to the standard form, combining like terms\r\n" ); document.write( "\r\n" ); document.write( " 3x^4 - 8x^3 + 5x^2 + 2x - 17 - 2x^4 + 10x^3 + 11x^2 + 18x - 14 = x^4 + 2x^3 + 16x^2 + 20x - 31.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Notice that \r\n" ); document.write( "\r\n" ); document.write( " p^2*qrs + pq^2*rs + pqr^2*s + pqrs^2 = pqrs*(p + q + r + s).\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Also notice that the leading coefficient of the polynomial standard form at x^4 is 1.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Due to Vieta's theorem\r\n" ); document.write( "\r\n" ); document.write( " pqrs = -31 (the product of the roots is equal to the constant term)\r\n" ); document.write( "\r\n" ); document.write( " p + q + r + s = -2 (the sum of the roots is the coefficient at x^3 with the opposite sign).\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Therefore,\r\n" ); document.write( "\r\n" ); document.write( " p^2*qrs + pq^2*rs + pqr^2*s + pqrs^2 = (-31)*(-2) = 62.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "ANSWER. p^2*qrs + pq^2*rs + pqr^2*s + pqrs^2 = 62.\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( "At this point, the problem is solved completely.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "//////////////////////////////\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Edwin, I explain it to you, again.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The original problem was in this reduced polynomial form.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "They composed this their monstrous version in order for to create their OWN NEW problem for their web-site.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "- .-.- .-.- .-.- .-.- .-.- .-.- .-.- .-.- .-.- .-.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Edwin, you ask me HOW do I know.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "First, it is obvious even for hedgehog or for rabbit.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Second, I have an ability to see through walls.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Really, I can see what happens on the other side of a wall.\r \n" ); document.write( "\n" ); document.write( "I can do it not because the rays of light go through a wall.\r \n" ); document.write( "\n" ); document.write( "I can see, because I know what happens on the other side of a wall.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " (using the method of deduction . . . )\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " Knowledge is a power.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |