document.write( "Question 1209721: For parts (a)-(d), let p, q, r, and s be the roots of g(x) = 3x^4 - 8x^3 + 5x^2 + 2x - 17 - 2x^4 + 10x^3 + 11x^2 + 18x - 14.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Compute pqr + pqs + prs + qrs.
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #850022 by math_tutor2020(3817)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "Answer: -20\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Explanation
\n" ); document.write( "3x^4 - 8x^3 + 5x^2 + 2x - 17 - 2x^4 + 10x^3 + 11x^2 + 18x - 14
\n" ); document.write( "simplifies to
\n" ); document.write( "x^4 + 2x^3 + 16x^2 + 20x - 31\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Consider the general quartic function
\n" ); document.write( "f(x) = ax^4 + bx^3 + cx^2 + dx + e\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "According to Vieta's formulas (specifically formulas (4) and (5) on that page) we can state that,
\n" ); document.write( "pqr + pqs + prs + qrs = -d/a = -20/1 = -20\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Another approach is to determine the approximate values of p,q,r,s
\n" ); document.write( "p = -2.1259
\n" ); document.write( "q = 0.8627
\n" ); document.write( "r = -0.3684 + 4.0948i
\n" ); document.write( "s = -0.3684 - 4.0948i
\n" ); document.write( "The order of the roots doesn't matter.
\n" ); document.write( "Then use a calculator to get this approximate result
\n" ); document.write( "pqr + pqs + prs + qrs = -20.0007015303
\n" ); document.write( "If you were to use more decimal digits in each of the four roots, then you would get closer to -20
\n" ); document.write( "
\n" ); document.write( "
\n" );