document.write( "Question 1209721: For parts (a)-(d), let p, q, r, and s be the roots of g(x) = 3x^4 - 8x^3 + 5x^2 + 2x - 17 - 2x^4 + 10x^3 + 11x^2 + 18x - 14.\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "Compute pqr + pqs + prs + qrs.
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #850022 by math_tutor2020(3817)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "Answer: -20\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Explanation \n" ); document.write( "3x^4 - 8x^3 + 5x^2 + 2x - 17 - 2x^4 + 10x^3 + 11x^2 + 18x - 14 \n" ); document.write( "simplifies to \n" ); document.write( "x^4 + 2x^3 + 16x^2 + 20x - 31\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Consider the general quartic function \n" ); document.write( "f(x) = ax^4 + bx^3 + cx^2 + dx + e\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "According to Vieta's formulas (specifically formulas (4) and (5) on that page) we can state that, \n" ); document.write( "pqr + pqs + prs + qrs = -d/a = -20/1 = -20\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Another approach is to determine the approximate values of p,q,r,s \n" ); document.write( "p = -2.1259 \n" ); document.write( "q = 0.8627 \n" ); document.write( "r = -0.3684 + 4.0948i \n" ); document.write( "s = -0.3684 - 4.0948i \n" ); document.write( "The order of the roots doesn't matter. \n" ); document.write( "Then use a calculator to get this approximate result \n" ); document.write( "pqr + pqs + prs + qrs = -20.0007015303 \n" ); document.write( "If you were to use more decimal digits in each of the four roots, then you would get closer to -20 \n" ); document.write( " \n" ); document.write( " |