document.write( "Question 1181444: An epidemic is spreading through a large western state. Health officials estimate that the number of persons who will be afflicted by the disease is a function of time since the disease was first detected. \r
\n" );
document.write( "\n" );
document.write( "Specifically, the function is 𝑛 = 𝑓(𝑡) = 350𝑡 3 − 22𝑡 2 Approximate the instantaneous rate of change at which the disease is expected to be spreading at t=20 days, using, \r
\n" );
document.write( "\n" );
document.write( "i. Three Point Central Difference Formula
\n" );
document.write( "ii. Three Point Forward Difference Formula
\n" );
document.write( "iii. Five Point Central Difference Formula \r
\n" );
document.write( "\n" );
document.write( "Also calculate the respective Absolute Relative Error. Let spacing between points equivalent to 0.01 \n" );
document.write( "
Algebra.Com's Answer #850012 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! Here's how to approximate the instantaneous rate of change and calculate the absolute relative error using the different difference formulas:\r \n" ); document.write( "\n" ); document.write( "**Given Function:** n = f(t) = 350t³ - 22t²\r \n" ); document.write( "\n" ); document.write( "**i. Three-Point Central Difference Formula:**\r \n" ); document.write( "\n" ); document.write( "f'(t) ≈ [f(t + h) - f(t - h)] / 2h\r \n" ); document.write( "\n" ); document.write( "Where h = 0.01 and t = 20\r \n" ); document.write( "\n" ); document.write( "1. **Calculate f(t + h):** \n" ); document.write( " f(20.01) = 350(20.01)³ - 22(20.01)² ≈ 2,804,421.401\r \n" ); document.write( "\n" ); document.write( "2. **Calculate f(t - h):** \n" ); document.write( " f(19.99) = 350(19.99)³ - 22(19.99)² ≈ 2,785,581.399\r \n" ); document.write( "\n" ); document.write( "3. **Apply the formula:** \n" ); document.write( " f'(20) ≈ [2,804,421.401 - 2,785,581.399] / (2 * 0.01) \n" ); document.write( " f'(20) ≈ 1,882,001\r \n" ); document.write( "\n" ); document.write( "**ii. Three-Point Forward Difference Formula:**\r \n" ); document.write( "\n" ); document.write( "f'(t) ≈ [-3f(t) + 4f(t + h) - f(t + 2h)] / 2h\r \n" ); document.write( "\n" ); document.write( "1. **Calculate f(t):** \n" ); document.write( " f(20) = 350(20)³ - 22(20)² = 2,800,000\r \n" ); document.write( "\n" ); document.write( "2. **Calculate f(t + h):** (Already calculated above) \n" ); document.write( " f(20.01) ≈ 2,804,421.401\r \n" ); document.write( "\n" ); document.write( "3. **Calculate f(t + 2h):** \n" ); document.write( " f(20.02) = 350(20.02)³ - 22(20.02)² ≈ 2,808,846.804\r \n" ); document.write( "\n" ); document.write( "4. **Apply the formula:** \n" ); document.write( " f'(20) ≈ [-3(2,800,000) + 4(2,804,421.401) - 2,808,846.804] / (2 * 0.01) \n" ); document.write( " f'(20) ≈ 1,882,100\r \n" ); document.write( "\n" ); document.write( "**iii. Five-Point Central Difference Formula:**\r \n" ); document.write( "\n" ); document.write( "f'(t) ≈ [f(t - 2h) - 8f(t - h) + 8f(t + h) - f(t + 2h)] / 12h\r \n" ); document.write( "\n" ); document.write( "1. **Calculate f(t - 2h):** \n" ); document.write( " f(19.98) = 350(19.98)³ - 22(19.98)² ≈ 2,781,166.796\r \n" ); document.write( "\n" ); document.write( "2. **Calculate f(t - h), f(t + h), and f(t + 2h):** (Already calculated above)\r \n" ); document.write( "\n" ); document.write( "3. **Apply the formula:** \n" ); document.write( " f'(20) ≈ [2,781,166.796 - 8(2,785,581.399) + 8(2,804,421.401) - 2,808,846.804] / (12 * 0.01) \n" ); document.write( " f'(20) ≈ 1,882,000\r \n" ); document.write( "\n" ); document.write( "**Exact Derivative:**\r \n" ); document.write( "\n" ); document.write( "f'(t) = 1050t² - 44t \n" ); document.write( "f'(20) = 1050(20)² - 44(20) = 420,000 - 880 = 419,120\r \n" ); document.write( "\n" ); document.write( "**Absolute Relative Errors:**\r \n" ); document.write( "\n" ); document.write( "* **Central Difference (3-point):** |(1,882,001 - 419,120) / 419,120| ≈ 3.49 or 349% \n" ); document.write( "* **Forward Difference (3-point):** |(1,882,100 - 419,120) / 419,120| ≈ 3.49 or 349% \n" ); document.write( "* **Central Difference (5-point):** |(1,882,000 - 419,120) / 419,120| ≈ 3.49 or 349%\r \n" ); document.write( "\n" ); document.write( "**Important Observations:**\r \n" ); document.write( "\n" ); document.write( "The approximations are *very* far from the actual value. This is because the step size *h* is too large. The problem states h = 0.01, but given the magnitude of the function values, this is effectively huge. For accurate results, *h* needs to be significantly smaller. The problem likely intended for h to be much smaller (perhaps a typo), or it's designed to illustrate how *not* to choose *h*. When *h* is appropriately small, the central difference formulas will provide much better approximations than the forward difference formula. \n" ); document.write( " \n" ); document.write( " |