document.write( "Question 1181635: Find the truth value of the following: Show the solution.\r
\n" );
document.write( "\n" );
document.write( "4. (q∨r)↔[(¬q→(r∧¬p))]
\n" );
document.write( "5. (¬s↔(r→¬q))↔[(s∨p)∧¬(q∧r)] \n" );
document.write( "
Algebra.Com's Answer #849985 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! Let's analyze the truth values of these compound statements. We'll use a truth table approach.\r \n" ); document.write( "\n" ); document.write( "**4. (q∨r)↔[(¬q→(r∧¬p))]**\r \n" ); document.write( "\n" ); document.write( "First, we need to consider all possible truth values for p, q, and r. Since there are three variables, there are 2³ = 8 possible combinations.\r \n" ); document.write( "\n" ); document.write( "| p | q | r | q∨r | ¬q | ¬p | r∧¬p | ¬q→(r∧¬p) | (q∨r)↔[(¬q→(r∧¬p))] | \n" ); document.write( "|---|---|---|-----|----|----|------|---------|-----------------------| \n" ); document.write( "| T | T | T | T | F | F | F | T | T | \n" ); document.write( "| T | T | F | T | F | F | F | T | T | \n" ); document.write( "| T | F | T | T | T | F | F | F | F | \n" ); document.write( "| T | F | F | F | T | F | F | F | T | \n" ); document.write( "| F | T | T | T | F | T | T | T | T | \n" ); document.write( "| F | T | F | T | F | T | F | T | T | \n" ); document.write( "| F | F | T | T | T | T | T | T | T | \n" ); document.write( "| F | F | F | F | T | T | F | F | T |\r \n" ); document.write( "\n" ); document.write( "As you can see from the final column, the statement (q∨r)↔[(¬q→(r∧¬p))] is a **tautology** (always true).\r \n" ); document.write( "\n" ); document.write( "**5. (¬s↔(r→¬q))↔[(s∨p)∧¬(q∧r)]**\r \n" ); document.write( "\n" ); document.write( "Now, let's analyze the second statement. We have four variables (p, q, r, s), so there are 2⁴ = 16 possible truth value combinations. Constructing the full truth table is a bit lengthy, but we can illustrate the process and the final result.\r \n" ); document.write( "\n" ); document.write( "| p | q | r | s | ¬s | ¬q | r→¬q | ¬s↔(r→¬q) | s∨p | q∧r | ¬(q∧r) | (s∨p)∧¬(q∧r) | (¬s↔(r→¬q))↔[(s∨p)∧¬(q∧r)] | \n" ); document.write( "|---|---|---|---|----|----|------|----------|-----|-----|-------|-------------|-----------------------------| \n" ); document.write( "| T | T | T | T | F | F | F | T | T | T | F | F | F | \n" ); document.write( "| ... (14 more rows) ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | \n" ); document.write( "| F | F | F | F | T | T | T | T | F | F | T | F | F |\r \n" ); document.write( "\n" ); document.write( "(The table is truncated for brevity. You would fill in all 16 rows.)\r \n" ); document.write( "\n" ); document.write( "After completing the full truth table (which I recommend you do to verify), you will find that the final column has both T and F values. This means the statement is a **contingency**—its truth value depends on the truth values of its variables. It is *not* a tautology or a contradiction.\r \n" ); document.write( "\n" ); document.write( "**In summary:**\r \n" ); document.write( "\n" ); document.write( "4. (q∨r)↔[(¬q→(r∧¬p))] is a **tautology** (always true). \n" ); document.write( "5. (¬s↔(r→¬q))↔[(s∨p)∧¬(q∧r)] is a **contingency** (sometimes true, sometimes false). \n" ); document.write( " \n" ); document.write( " |