document.write( "Question 1181807: The volume of the rectangular block in the figure is calculated from the following measurements of its dimensions: �10.00±0.10 cm, �5.00±0.06 cm and �4.00±0.04 cm. Calculate the error in the value of the volume of the block assuming: a) the errors are independent b) the errors are correlated such that they all push the estimate in the same direction. \n" ); document.write( "
Algebra.Com's Answer #849963 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! Here's how to calculate the error in the volume, considering both independent and correlated errors:\r \n" ); document.write( "\n" ); document.write( "**1. Calculate the Nominal Volume:**\r \n" ); document.write( "\n" ); document.write( "V = lwh = (10.00 cm)(5.00 cm)(4.00 cm) = 200.00 cm³\r \n" ); document.write( "\n" ); document.write( "**2. Fractional Uncertainties:**\r \n" ); document.write( "\n" ); document.write( "* Δl/l = 0.10 cm / 10.00 cm = 0.01 \n" ); document.write( "* Δw/w = 0.06 cm / 5.00 cm = 0.012 \n" ); document.write( "* Δh/h = 0.04 cm / 4.00 cm = 0.01\r \n" ); document.write( "\n" ); document.write( "**a) Independent Errors:**\r \n" ); document.write( "\n" ); document.write( "When errors are independent, we add the *squares* of the fractional uncertainties and then take the square root.\r \n" ); document.write( "\n" ); document.write( "1. Fractional uncertainty in volume: \n" ); document.write( " (ΔV/V)² = (Δl/l)² + (Δw/w)² + (Δh/h)² \n" ); document.write( " (ΔV/V)² = (0.01)² + (0.012)² + (0.01)² \n" ); document.write( " (ΔV/V)² = 0.0001 + 0.000144 + 0.0001 = 0.000344 \n" ); document.write( " ΔV/V = √0.000344 ≈ 0.0185\r \n" ); document.write( "\n" ); document.write( "2. Absolute uncertainty in volume: \n" ); document.write( " ΔV = (ΔV/V) * V = 0.0185 * 200.00 cm³ ≈ 3.7 cm³\r \n" ); document.write( "\n" ); document.write( "3. Volume with uncertainty: \n" ); document.write( " V = 200.0 ± 3.7 cm³\r \n" ); document.write( "\n" ); document.write( "**b) Correlated Errors:**\r \n" ); document.write( "\n" ); document.write( "When errors are fully correlated (all pushing the estimate in the same direction), we simply *add* the fractional uncertainties.\r \n" ); document.write( "\n" ); document.write( "1. Fractional uncertainty in volume: \n" ); document.write( " ΔV/V = Δl/l + Δw/w + Δh/h \n" ); document.write( " ΔV/V = 0.01 + 0.012 + 0.01 = 0.022\r \n" ); document.write( "\n" ); document.write( "2. Absolute uncertainty in volume: \n" ); document.write( " ΔV = (ΔV/V) * V = 0.022 * 200.00 cm³ = 4.4 cm³\r \n" ); document.write( "\n" ); document.write( "3. Volume with uncertainty: \n" ); document.write( " V = 200.0 ± 4.4 cm³\r \n" ); document.write( "\n" ); document.write( "**Summary:**\r \n" ); document.write( "\n" ); document.write( "* **Independent Errors:** V = 200.0 ± 3.7 cm³ \n" ); document.write( "* **Correlated Errors:** V = 200.0 ± 4.4 cm³\r \n" ); document.write( "\n" ); document.write( "As expected, the uncertainty is larger when the errors are correlated because they all contribute to the error in the same direction. When independent, there is a chance that some errors cancel each other out, thus reducing the total uncertainty. \n" ); document.write( " \n" ); document.write( " |