document.write( "Question 1181818: A rectangular brass bar of mass M has dimensions a, b, c as shown in the
\n" );
document.write( "figure below. The moment of inertia I about the axis at the centre of the ab
\n" );
document.write( "face and perpendicular to it, is given by:\r
\n" );
document.write( "\n" );
document.write( "I=(M/12)(a^2 + b^2)\r
\n" );
document.write( "\n" );
document.write( "The following measurements are made:
\n" );
document.write( "𝑀=135.0±0.1𝑔
\n" );
document.write( "𝑎 =80±1 𝑚𝑚
\n" );
document.write( "𝑏 =10±1 𝑚𝑚
\n" );
document.write( "𝑐 =20.00±0.01 𝑚𝑚\r
\n" );
document.write( "\n" );
document.write( "Calculate the standard error in:
\n" );
document.write( "a) the density ρ of the material
\n" );
document.write( "b) the moment of inertia I \n" );
document.write( "
Algebra.Com's Answer #849962 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! Here's how to calculate the standard error in density (ρ) and moment of inertia (I):\r \n" ); document.write( "\n" ); document.write( "**a) Standard Error in Density (ρ)**\r \n" ); document.write( "\n" ); document.write( "1. **Calculate the nominal density:** \n" ); document.write( " ρ = M / (abc) = 135.0 g / (80 mm * 10 mm * 20.00 mm) = 0.084375 g/mm³\r \n" ); document.write( "\n" ); document.write( "2. **Calculate the fractional uncertainties:** \n" ); document.write( " * ΔM/M = 0.1 g / 135.0 g = 0.000741 \n" ); document.write( " * Δa/a = 1 mm / 80 mm = 0.0125 \n" ); document.write( " * Δb/b = 1 mm / 10 mm = 0.1 \n" ); document.write( " * Δc/c = 0.01 mm / 20.00 mm = 0.0005\r \n" ); document.write( "\n" ); document.write( "3. **Calculate the fractional uncertainty in density:** \n" ); document.write( " (Δρ/ρ)² = (ΔM/M)² + (Δa/a)² + (Δb/b)² + (Δc/c)² \n" ); document.write( " (Δρ/ρ)² = (0.000741)² + (0.0125)² + (0.1)² + (0.0005)² \n" ); document.write( " (Δρ/ρ)² = 0.00000055 + 0.00015625 + 0.01 + 0.00000025 = 0.010157 \n" ); document.write( " Δρ/ρ = √0.010157 ≈ 0.1008\r \n" ); document.write( "\n" ); document.write( "4. **Calculate the absolute uncertainty in density:** \n" ); document.write( " Δρ = (Δρ/ρ) * ρ = 0.1008 * 0.084375 g/mm³ ≈ 0.0085 g/mm³\r \n" ); document.write( "\n" ); document.write( "5. **Express the density with its uncertainty:** \n" ); document.write( " ρ = 0.0844 ± 0.0085 g/mm³ (rounded to appropriate significant figures)\r \n" ); document.write( "\n" ); document.write( "**b) Standard Error in Moment of Inertia (I)**\r \n" ); document.write( "\n" ); document.write( "1. **Calculate the nominal moment of inertia:** \n" ); document.write( " I = (M/12)(a² + b²) = (135.0 g / 12) * ((80 mm)² + (10 mm)²) = 11.25 g * (6400 mm² + 100 mm²) = 11.25 g * 6500 mm² = 73125 g mm²\r \n" ); document.write( "\n" ); document.write( "2. **Calculate the fractional uncertainties:** (Same as in part a) \n" ); document.write( " * ΔM/M = 0.000741 \n" ); document.write( " * Δa/a = 0.0125 \n" ); document.write( " * Δb/b = 0.1\r \n" ); document.write( "\n" ); document.write( "3. **Calculate the fractional uncertainty in I:** \n" ); document.write( " (ΔI/I)² = (ΔM/M)² + [2*(Δa/a)]² + [2*(Δb/b)]² \n" ); document.write( " (ΔI/I)² = (0.000741)² + [2*(0.0125)]² + [2*(0.1)]² \n" ); document.write( " (ΔI/I)² = 0.00000055 + 0.000625 + 0.04 = 0.04062555 \n" ); document.write( " ΔI/I = √0.04062555 ≈ 0.2016\r \n" ); document.write( "\n" ); document.write( "4. **Calculate the absolute uncertainty in I:** \n" ); document.write( " ΔI = (ΔI/I) * I = 0.2016 * 73125 g mm² ≈ 14750 g mm²\r \n" ); document.write( "\n" ); document.write( "5. **Express the moment of inertia with its uncertainty:** \n" ); document.write( " I = 73100 ± 14800 g mm² (rounded to appropriate significant figures)\r \n" ); document.write( "\n" ); document.write( "**Key Points:**\r \n" ); document.write( "\n" ); document.write( "* The uncertainty in *b* has the largest impact on both ρ and I because it has the largest fractional uncertainty. \n" ); document.write( "* When calculating the uncertainty in I, the uncertainties in *a* and *b* are multiplied by 2 because they are squared in the formula for I. \n" ); document.write( "* Always round your final answers to the appropriate number of significant figures. The uncertainties should usually have only one significant figure (sometimes two if the leading digit is a 1 or 2), and the measured values should be rounded to the same decimal place as the uncertainty. \n" ); document.write( " \n" ); document.write( " |