document.write( "Question 1209710: 4^(1/√x) + 16^(1/√x) = 64^(1/√x)
\n" );
document.write( "find x, \n" );
document.write( "
Algebra.Com's Answer #849938 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! Here's how to solve this equation:\r \n" ); document.write( "\n" ); document.write( "1. **Rewrite with a common base:** Notice that 4, 16, and 64 are all powers of 4:\r \n" ); document.write( "\n" ); document.write( "* 4 = 4¹ \n" ); document.write( "* 16 = 4² \n" ); document.write( "* 64 = 4³\r \n" ); document.write( "\n" ); document.write( "So, the equation becomes:\r \n" ); document.write( "\n" ); document.write( "4^(1/√x) + (4²)^(1/√x) = (4³)^(1/√x)\r \n" ); document.write( "\n" ); document.write( "2. **Simplify using exponent rules:**\r \n" ); document.write( "\n" ); document.write( "4^(1/√x) + 4^(2/√x) = 4^(3/√x)\r \n" ); document.write( "\n" ); document.write( "3. **Substitute:** Let y = 4^(1/√x). Then the equation becomes:\r \n" ); document.write( "\n" ); document.write( "y + y² = y³\r \n" ); document.write( "\n" ); document.write( "4. **Rearrange:**\r \n" ); document.write( "\n" ); document.write( "y³ - y² - y = 0\r \n" ); document.write( "\n" ); document.write( "5. **Factor:**\r \n" ); document.write( "\n" ); document.write( "y(y² - y - 1) = 0\r \n" ); document.write( "\n" ); document.write( "6. **Solve for y:**\r \n" ); document.write( "\n" ); document.write( "* y = 0 (This is not possible since y = 4^(1/√x) and exponential functions are always positive.)\r \n" ); document.write( "\n" ); document.write( "* y² - y - 1 = 0\r \n" ); document.write( "\n" ); document.write( "Use the quadratic formula to solve for y:\r \n" ); document.write( "\n" ); document.write( "y = (1 ± √(1 + 4)) / 2 \n" ); document.write( "y = (1 ± √5) / 2\r \n" ); document.write( "\n" ); document.write( "Since y must be positive, we take the positive root:\r \n" ); document.write( "\n" ); document.write( "y = (1 + √5) / 2 (This is the golden ratio, often represented by φ)\r \n" ); document.write( "\n" ); document.write( "7. **Substitute back:** Now substitute y = 4^(1/√x) back into the equation:\r \n" ); document.write( "\n" ); document.write( "4^(1/√x) = (1 + √5) / 2\r \n" ); document.write( "\n" ); document.write( "8. **Take the logarithm of both sides (base 4 is convenient):**\r \n" ); document.write( "\n" ); document.write( "log₄(4^(1/√x)) = log₄((1 + √5) / 2)\r \n" ); document.write( "\n" ); document.write( "9. **Simplify:**\r \n" ); document.write( "\n" ); document.write( "1/√x = log₄((1 + √5) / 2)\r \n" ); document.write( "\n" ); document.write( "10. **Solve for x:**\r \n" ); document.write( "\n" ); document.write( "√x = 1 / log₄((1 + √5) / 2)\r \n" ); document.write( "\n" ); document.write( "x = 1 / [log₄((1 + √5) / 2)]²\r \n" ); document.write( "\n" ); document.write( "11. **Change of base formula (optional):** It might be easier to calculate with natural logarithms (ln):\r \n" ); document.write( "\n" ); document.write( "x = 1 / [(ln((1 + √5) / 2) / ln(4))]² \n" ); document.write( "x = 1 / [(ln((1 + √5) / 2) / 2ln(2))]² \n" ); document.write( "x = 4 / [ln((1 + √5) / 2)]²\r \n" ); document.write( "\n" ); document.write( "12. **Calculate:** Using a calculator:\r \n" ); document.write( "\n" ); document.write( "x ≈ 1.9999999... ≈ 2\r \n" ); document.write( "\n" ); document.write( "Therefore, x = 2. \n" ); document.write( " \n" ); document.write( " |