document.write( "Question 1182585: It is desired to determine the distance between two
\n" );
document.write( "inaccessible objects A and B. Both A and B are visible
\n" );
document.write( "from two other points C and D. Given the following
\n" );
document.write( "measurements, determine the distance AB: DC = 153.4 m,
\n" );
document.write( "ADB = 58°22’, ADC = 81° 17’, BCA = 65° 43’ and BCD =
\n" );
document.write( "100° 08’ \n" );
document.write( "
Algebra.Com's Answer #849918 by CPhill(1987) You can put this solution on YOUR website! Here's how to determine the distance AB using the given measurements:\r \n" ); document.write( "\n" ); document.write( "**1. Calculate angles BDC and ABD:**\r \n" ); document.write( "\n" ); document.write( "* **Angle BDC:** \n" ); document.write( " * BDC = BCD - BCA \n" ); document.write( " * BDC = 100° 08’ - 65° 43’ \n" ); document.write( " * BDC = 34° 25’\r \n" ); document.write( "\n" ); document.write( "* **Angle ABD:** \n" ); document.write( " * In triangle ADB, the sum of angles is 180° \n" ); document.write( " * ABD = 180° - ADB - BDC \n" ); document.write( " * ABD = 180° - 58° 22’ - 34° 25’ \n" ); document.write( " * ABD = 87° 13’\r \n" ); document.write( "\n" ); document.write( "**2. Calculate angles ACD and BAC:**\r \n" ); document.write( "\n" ); document.write( "* **Angle ACD:** \n" ); document.write( " * In triangle BCD, the sum of angles is 180° \n" ); document.write( " * ACD = 180° - ADC - BCA \n" ); document.write( " * ACD = 180° - 81° 17’ - 65° 43’ \n" ); document.write( " * ACD = 33°\r \n" ); document.write( "\n" ); document.write( "* **Angle BAC:** \n" ); document.write( " * In triangle ABC, the sum of angles is 180° \n" ); document.write( " * BAC = 180° - BCA - ACB \n" ); document.write( " * We know BCA = 65° 43’ and ACB = BCD - ACD = 100° 08' - 33° = 67° 08' \n" ); document.write( " * BAC = 180° - 65° 43’ - 67° 08’ \n" ); document.write( " * BAC = 47° 09’\r \n" ); document.write( "\n" ); document.write( "**3. Use the Law of Sines to find AD and AC:**\r \n" ); document.write( "\n" ); document.write( "* **Side AD:** \n" ); document.write( " * AD / sin(BDC) = DC / sin(ADB) \n" ); document.write( " * AD = (DC * sin(BDC)) / sin(ADB) \n" ); document.write( " * AD = (153.4 * sin(34° 25’)) / sin(58° 22’) \n" ); document.write( " * AD ≈ 98.2 m\r \n" ); document.write( "\n" ); document.write( "* **Side AC:** \n" ); document.write( " * AC / sin(BCA) = DC / sin(ADC) \n" ); document.write( " * AC = (DC * sin(BCA)) / sin(ADC) \n" ); document.write( " * AC = (153.4 * sin(65° 43’)) / sin(81° 17’) \n" ); document.write( " * AC ≈ 142.6 m\r \n" ); document.write( "\n" ); document.write( "**4. Use the Law of Cosines to find AB:**\r \n" ); document.write( "\n" ); document.write( "* In triangle ABC: \n" ); document.write( " * AB² = AC² + BC² - 2 * AC * BC * cos(ACB) \n" ); document.write( " * We already know AC and we can find BC using the Law of Sines in triangle BCD. \n" ); document.write( " * BC / sin(BDC) = DC / sin(DBC) \n" ); document.write( " * We need to find angle DBC = 180 - BDC - BCD = 180 - 34° 25' - 100° 08' = 45° 27' \n" ); document.write( " * BC = (153.4 * sin(34° 25')) / sin(45° 27') = 119.8 m \n" ); document.write( " * AB² = 142.6² + 119.8² - 2 * 142.6 * 119.8 * cos(67° 08’) \n" ); document.write( " * AB ≈ 122.1 m\r \n" ); document.write( "\n" ); document.write( "**Therefore, the distance between A and B is approximately 122.1 meters.** \n" ); document.write( " |